Skip to main content

No project description provided

Project description

TensorDict

TensorDict is a dictionary-like class that inherits properties from tensors, such as indexing, shape operations, casting to device etc.

The main purpose of TensorDict is to make code-bases more readable and modular by abstracting away tailored operations:

for i, tensordict in enumerate(dataset):
    # the model reads and writes tensordicts
    tensordict = model(tensordict)
    loss = loss_module(tensordict)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

With this level of abstraction, one can recycle a training loop for highly heterogeneous task. Each individual step of the training loop (data collection and transform, model prediction, loss computation etc.) can be tailored to the use case at hand without impacting the others. For instance, the above example can be easily used across classification and segmentation tasks, among many others.

Installation

To install the latest stable version of tensordict, simply run

pip install tensordict

This will work with python 3.7 and upward as well as pytorch 1.12 and upward.

To enjoy the latest features, one can use

pip install tensordict-nightly

Features

General

A tensordict is primarily defined by its batch_size (or shape) and its key-value pairs:

from tensordict import TensorDict
import torch
tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])

The batch_size and the first dimensions of each of the tensors must be compliant. The tensors can be of any dtype and device. Optionally, one can restrict a tensordict to live on a dedicated device, which will send each tensor that is written there:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4], device="cuda:0")
tensordict["key 3"] = torch.randn(3, 4, device="cpu")
assert tensordict["key 3"].device is torch.device("cuda:0")

Tensor-like features

TensorDict objects can be indexed exactly like tensors. The resulting of indexing a TensorDict is another TensorDict containing tensors indexed along the required dimension:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])
sub_tensordict = tensordict[..., :2]
assert sub_tensordict.shape == torch.Size([3, 2])
assert sub_tensordict["key 1"].shape == torch.Size([3, 2, 5])

Similarly, one can build tensordicts by stacking or concatenating single tensordicts:

tensordicts = [TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4]) for _ in range(2)]
stack_tensordict = torch.stack(tensordicts, 1)
assert stack_tensordict.shape == torch.Size([3, 2, 4])
assert stack_tensordict["key 1"].shape == torch.Size([3, 2, 4, 5])
cat_tensordict = torch.cat(tensordicts, 0)
assert cat_tensordict.shape == torch.Size([6, 4])
assert cat_tensordict["key 1"].shape == torch.Size([6, 4, 5])

TensorDict instances can also be reshaped, viewed, squeezed and unsqueezed:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])
print(tensordict.view(-1))  # prints torch.Size([12])
print(tensordict.reshape(-1))  # prints torch.Size([12])
print(tensordict.unsqueeze(-1))  # prints torch.Size([3, 4, 1])

One can also send tensordict from device to device, place them in shared memory, clone them, update them in-place or not, split them, unbind them, expand them etc.

If a functionality is missing, it is easy to call it using apply() or apply_():

tensordict_uniform = tensordict.apply(lambda tensor: tensor.uniform_())

TensorDict for functional programming using FuncTorch

We also provide an API to use TensorDict in conjunction with FuncTorch. For instance, TensorDict makes it easy to concatenate model weights to do model ensembling:

from torch import nn
from tensordict import TensorDict
from copy import deepcopy
from tensordict.nn.functional_modules import FunctionalModule
import torch
from functorch import vmap
layer1 = nn.Linear(3, 4)
layer2 = nn.Linear(4, 4)
model1 = nn.Sequential(layer1, layer2)
model2 = deepcopy(model1)
# we represent the weights hierarchically
weights1 = TensorDict(model1.state_dict(), []).unflatten_keys(".")
weights2 = TensorDict(model2.state_dict(), []).unflatten_keys(".")
weights = torch.stack([weights1, weights2], 0)
fmodule, _ = FunctionalModule._create_from(model1)
# an input we'd like to pass through the model
x = torch.randn(10, 3)
y = vmap(fmodule, (0, None))(weights, x)
y.shape  # torch.Size([2, 10, 4])

Lazy preallocation

Pre-allocating tensors can be cumbersome and hard to scale if the list of preallocated items varies according to the script configuration. TensorDict solves this in an elegant way. Assume you are working with a function foo() -> TensorDict, e.g.

def foo():
    tensordict = TensorDict({}, batch_size=[])
    tensordict["a"] = torch.randn(3)
    tensordict["b"] = TensorDict({"c": torch.zeros(2)}, batch_size=[])
    return tensordict

and you would like to call this function repeatedly. You could do this in two ways. The first would simply be to stack the calls to the function:

tensordict = torch.stack([foo() for _ in range(N)])

However, you could also choose to preallocate the tensordict:

tensordict = TensorDict({}, batch_size=[N])
for i in range(N):
    tensordict[i] = foo()

which also results in a tensordict (when N = 10)

TensorDict(
    fields={
        a: Tensor(torch.Size([10, 3]), dtype=torch.float32),
        b: TensorDict(
            fields={
                c: Tensor(torch.Size([10, 2]), dtype=torch.float32)},
            batch_size=torch.Size([10]),
            device=None,
            is_shared=False)},
    batch_size=torch.Size([10]),
    device=None,
    is_shared=False)

When i==0, your empty tensordict will automatically be populated with empty tensors of batch-size N. After that, updates will be written in-place. Note that this would also work with a shuffled series of indices (pre-allocation does not require you to go through the tensordict in an ordered fashion).

Nesting TensorDicts

It is possible to nest tensordict. The only requirement is that the sub-tensordict should be indexable under the parent tensordict, i.e. its batch size should match (but could be longer than) the parent batch size.

We can switch easily between hierarchical and flat representations. For instance, the following code will result in a single-level tensordict with keys "key 1" and "key 2.sub-key":

>>> tensordict = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": TensorDict({"sub-key": torch.randn(3, 4, 5, 6)}, batch_size=[3, 4, 5])
... }, batch_size=[3, 4])
>>> tensordict_unflatten = tensordict.unflatten_keys(separator=".")

Accessing nested tensordicts can be achieved with a single index:

>>> sub_value = tensordict["key 2", "sub-key"]

Disclaimer

TensorDict is at the alpha-stage, meaning that there may be bc-breaking changes introduced at any moment without warranty. Hopefully that should not happen too often, as the current roadmap mostly involves adding new features and building compatibility with the broader pytorch ecosystem.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensordict_nightly-2022.11.11-py310-none-any.whl (78.4 kB view details)

Uploaded Python 3.10

tensordict_nightly-2022.11.11-py39-none-any.whl (78.4 kB view details)

Uploaded Python 3.9

tensordict_nightly-2022.11.11-py38-none-any.whl (78.4 kB view details)

Uploaded Python 3.8

tensordict_nightly-2022.11.11-py37-none-any.whl (78.4 kB view details)

Uploaded Python 3.7

File details

Details for the file tensordict_nightly-2022.11.11-py310-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.11-py310-none-any.whl
  • Upload date:
  • Size: 78.4 kB
  • Tags: Python 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.11-py310-none-any.whl
Algorithm Hash digest
SHA256 08bffb974e97ca17eca81c66b64952b8601c4f1b8abbad8aa586747a48f35791
MD5 ca70909b14a917b0ad38db61f8aafce9
BLAKE2b-256 8eb334990e56abf13f0f68e5aae550744ca07b12ae4c66f526f6925856ce126e

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.11-py39-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.11-py39-none-any.whl
  • Upload date:
  • Size: 78.4 kB
  • Tags: Python 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.11-py39-none-any.whl
Algorithm Hash digest
SHA256 27be609335a55aa98d0892ddb13407d35d974765ad44ffb0236f641a251ad7af
MD5 91f345b6704bb1bf5b50abe7ef7635ae
BLAKE2b-256 54f041a52b798bd3b8154a30348a18d901e72c92d110b93869b810de497ed520

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.11-py38-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.11-py38-none-any.whl
  • Upload date:
  • Size: 78.4 kB
  • Tags: Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.11-py38-none-any.whl
Algorithm Hash digest
SHA256 4561f306388178c12599f4372e89e840fe36b0a5d95aa6ee314c10ac3fea9086
MD5 0031cfc52f8a062a020aa090fb1fbdea
BLAKE2b-256 b30ba6c846906dd136f69c878bb5ccf1f6c4d1c32cf052b4b81ae8a6505cd3ba

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.11-py37-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.11-py37-none-any.whl
  • Upload date:
  • Size: 78.4 kB
  • Tags: Python 3.7
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.11-py37-none-any.whl
Algorithm Hash digest
SHA256 11f782445bd04c739a77541b96c84894ea37f0a6ec8d8bc68d79a460d69f3922
MD5 5c2095ddae6edf57447f0124b116a9d2
BLAKE2b-256 714657173fb8a2c4dda8b7bd5799afaac688720f848bbbbff6f0c5768e3b6758

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page