Skip to main content

No project description provided

Project description

Documentation

TensorDict

TensorDict is a dictionary-like class that inherits properties from tensors, such as indexing, shape operations, casting to device etc.

The main purpose of TensorDict is to make code-bases more readable and modular by abstracting away tailored operations:

for i, tensordict in enumerate(dataset):
    # the model reads and writes tensordicts
    tensordict = model(tensordict)
    loss = loss_module(tensordict)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

With this level of abstraction, one can recycle a training loop for highly heterogeneous task. Each individual step of the training loop (data collection and transform, model prediction, loss computation etc.) can be tailored to the use case at hand without impacting the others. For instance, the above example can be easily used across classification and segmentation tasks, among many others.

Installation

To install the latest stable version of tensordict, simply run

pip install tensordict

This will work with python 3.7 and upward as well as pytorch 1.12 and upward.

To enjoy the latest features, one can use

pip install tensordict-nightly

Features

General

A tensordict is primarily defined by its batch_size (or shape) and its key-value pairs:

from tensordict import TensorDict
import torch
tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])

The batch_size and the first dimensions of each of the tensors must be compliant. The tensors can be of any dtype and device. Optionally, one can restrict a tensordict to live on a dedicated device, which will send each tensor that is written there:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4], device="cuda:0")
tensordict["key 3"] = torch.randn(3, 4, device="cpu")
assert tensordict["key 3"].device is torch.device("cuda:0")

Tensor-like features

TensorDict objects can be indexed exactly like tensors. The resulting of indexing a TensorDict is another TensorDict containing tensors indexed along the required dimension:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])
sub_tensordict = tensordict[..., :2]
assert sub_tensordict.shape == torch.Size([3, 2])
assert sub_tensordict["key 1"].shape == torch.Size([3, 2, 5])

Similarly, one can build tensordicts by stacking or concatenating single tensordicts:

tensordicts = [TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4]) for _ in range(2)]
stack_tensordict = torch.stack(tensordicts, 1)
assert stack_tensordict.shape == torch.Size([3, 2, 4])
assert stack_tensordict["key 1"].shape == torch.Size([3, 2, 4, 5])
cat_tensordict = torch.cat(tensordicts, 0)
assert cat_tensordict.shape == torch.Size([6, 4])
assert cat_tensordict["key 1"].shape == torch.Size([6, 4, 5])

TensorDict instances can also be reshaped, viewed, squeezed and unsqueezed:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])
print(tensordict.view(-1))  # prints torch.Size([12])
print(tensordict.reshape(-1))  # prints torch.Size([12])
print(tensordict.unsqueeze(-1))  # prints torch.Size([3, 4, 1])

One can also send tensordict from device to device, place them in shared memory, clone them, update them in-place or not, split them, unbind them, expand them etc.

If a functionality is missing, it is easy to call it using apply() or apply_():

tensordict_uniform = tensordict.apply(lambda tensor: tensor.uniform_())

TensorDict for functional programming using FuncTorch

We also provide an API to use TensorDict in conjunction with FuncTorch. For instance, TensorDict makes it easy to concatenate model weights to do model ensembling:

from torch import nn
from tensordict import TensorDict
from copy import deepcopy
from tensordict.nn.functional_modules import FunctionalModule
import torch
from functorch import vmap
layer1 = nn.Linear(3, 4)
layer2 = nn.Linear(4, 4)
model1 = nn.Sequential(layer1, layer2)
model2 = deepcopy(model1)
# we represent the weights hierarchically
weights1 = TensorDict(model1.state_dict(), []).unflatten_keys(".")
weights2 = TensorDict(model2.state_dict(), []).unflatten_keys(".")
weights = torch.stack([weights1, weights2], 0)
fmodule, _ = FunctionalModule._create_from(model1)
# an input we'd like to pass through the model
x = torch.randn(10, 3)
y = vmap(fmodule, (0, None))(weights, x)
y.shape  # torch.Size([2, 10, 4])

Lazy preallocation

Pre-allocating tensors can be cumbersome and hard to scale if the list of preallocated items varies according to the script configuration. TensorDict solves this in an elegant way. Assume you are working with a function foo() -> TensorDict, e.g.

def foo():
    tensordict = TensorDict({}, batch_size=[])
    tensordict["a"] = torch.randn(3)
    tensordict["b"] = TensorDict({"c": torch.zeros(2)}, batch_size=[])
    return tensordict

and you would like to call this function repeatedly. You could do this in two ways. The first would simply be to stack the calls to the function:

tensordict = torch.stack([foo() for _ in range(N)])

However, you could also choose to preallocate the tensordict:

tensordict = TensorDict({}, batch_size=[N])
for i in range(N):
    tensordict[i] = foo()

which also results in a tensordict (when N = 10)

TensorDict(
    fields={
        a: Tensor(torch.Size([10, 3]), dtype=torch.float32),
        b: TensorDict(
            fields={
                c: Tensor(torch.Size([10, 2]), dtype=torch.float32)},
            batch_size=torch.Size([10]),
            device=None,
            is_shared=False)},
    batch_size=torch.Size([10]),
    device=None,
    is_shared=False)

When i==0, your empty tensordict will automatically be populated with empty tensors of batch-size N. After that, updates will be written in-place. Note that this would also work with a shuffled series of indices (pre-allocation does not require you to go through the tensordict in an ordered fashion).

Nesting TensorDicts

It is possible to nest tensordict. The only requirement is that the sub-tensordict should be indexable under the parent tensordict, i.e. its batch size should match (but could be longer than) the parent batch size.

We can switch easily between hierarchical and flat representations. For instance, the following code will result in a single-level tensordict with keys "key 1" and "key 2.sub-key":

>>> tensordict = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": TensorDict({"sub-key": torch.randn(3, 4, 5, 6)}, batch_size=[3, 4, 5])
... }, batch_size=[3, 4])
>>> tensordict_flatten = tensordict.flatten_keys(separator=".")

Accessing nested tensordicts can be achieved with a single index:

>>> sub_value = tensordict["key 2", "sub-key"]

Disclaimer

TensorDict is at the alpha-stage, meaning that there may be bc-breaking changes introduced at any moment without warranty. Hopefully that should not happen too often, as the current roadmap mostly involves adding new features and building compatibility with the broader pytorch ecosystem.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensordict_nightly-2022.11.22-py310-none-any.whl (80.9 kB view details)

Uploaded Python 3.10

tensordict_nightly-2022.11.22-py39-none-any.whl (80.9 kB view details)

Uploaded Python 3.9

tensordict_nightly-2022.11.22-py38-none-any.whl (80.9 kB view details)

Uploaded Python 3.8

tensordict_nightly-2022.11.22-py37-none-any.whl (80.9 kB view details)

Uploaded Python 3.7

File details

Details for the file tensordict_nightly-2022.11.22-py310-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.22-py310-none-any.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: Python 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.22-py310-none-any.whl
Algorithm Hash digest
SHA256 451b2bdcbf88de0ccb0327157692c94dba51bbad1f78f5a990efdf7bc65a3064
MD5 033f926a8daafb170c25a1850a35eec0
BLAKE2b-256 89f12b2b0cf6da5adce9d9d77eed3dd6d30d952c92d9e1f3e61b97865fd13172

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.22-py39-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.22-py39-none-any.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: Python 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.22-py39-none-any.whl
Algorithm Hash digest
SHA256 3f0a4146c873c7a5ba4bddf54f7d7147188f989835ddc79879bc0664847b7801
MD5 e52a5193a687b7c7b681ae5dd1d53f8d
BLAKE2b-256 03ecbb52ab62934634f8ba303e9b81a34112d3b08d99c38733635791b5c9357a

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.22-py38-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.22-py38-none-any.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.22-py38-none-any.whl
Algorithm Hash digest
SHA256 098e20516e64323c1f707cd2920e0a50ae41f35548f92d9ff9a074f3d0a26092
MD5 52b9caa7bea9881f7fbe845167e1453e
BLAKE2b-256 62b30b5eb78c59b00eb6eb87c3590e50bb3536b663d2ad00bdc7b5265a2c58ed

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.22-py37-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.22-py37-none-any.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: Python 3.7
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.22-py37-none-any.whl
Algorithm Hash digest
SHA256 cb0db9a075c953db66cac94f07ca6814df5c206c035e0140abfb936eb3cfb029
MD5 42faf5427ab291c03dd99c5a51aed2f1
BLAKE2b-256 176cac1b5caff5aa15fa3c43e76125ed1fb0e6f097abb1514b116315cf058f19

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page