Skip to main content

No project description provided

Project description

Documentation

TensorDict

TensorDict is a dictionary-like class that inherits properties from tensors, such as indexing, shape operations, casting to device etc.

The main purpose of TensorDict is to make code-bases more readable and modular by abstracting away tailored operations:

for i, tensordict in enumerate(dataset):
    # the model reads and writes tensordicts
    tensordict = model(tensordict)
    loss = loss_module(tensordict)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

With this level of abstraction, one can recycle a training loop for highly heterogeneous task. Each individual step of the training loop (data collection and transform, model prediction, loss computation etc.) can be tailored to the use case at hand without impacting the others. For instance, the above example can be easily used across classification and segmentation tasks, among many others.

Installation

To install the latest stable version of tensordict, simply run

pip install tensordict

This will work with python 3.7 and upward as well as pytorch 1.12 and upward.

To enjoy the latest features, one can use

pip install tensordict-nightly

Features

General

A tensordict is primarily defined by its batch_size (or shape) and its key-value pairs:

from tensordict import TensorDict
import torch
tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])

The batch_size and the first dimensions of each of the tensors must be compliant. The tensors can be of any dtype and device. Optionally, one can restrict a tensordict to live on a dedicated device, which will send each tensor that is written there:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4], device="cuda:0")
tensordict["key 3"] = torch.randn(3, 4, device="cpu")
assert tensordict["key 3"].device is torch.device("cuda:0")

Tensor-like features

TensorDict objects can be indexed exactly like tensors. The resulting of indexing a TensorDict is another TensorDict containing tensors indexed along the required dimension:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])
sub_tensordict = tensordict[..., :2]
assert sub_tensordict.shape == torch.Size([3, 2])
assert sub_tensordict["key 1"].shape == torch.Size([3, 2, 5])

Similarly, one can build tensordicts by stacking or concatenating single tensordicts:

tensordicts = [TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4]) for _ in range(2)]
stack_tensordict = torch.stack(tensordicts, 1)
assert stack_tensordict.shape == torch.Size([3, 2, 4])
assert stack_tensordict["key 1"].shape == torch.Size([3, 2, 4, 5])
cat_tensordict = torch.cat(tensordicts, 0)
assert cat_tensordict.shape == torch.Size([6, 4])
assert cat_tensordict["key 1"].shape == torch.Size([6, 4, 5])

TensorDict instances can also be reshaped, viewed, squeezed and unsqueezed:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])
print(tensordict.view(-1))  # prints torch.Size([12])
print(tensordict.reshape(-1))  # prints torch.Size([12])
print(tensordict.unsqueeze(-1))  # prints torch.Size([3, 4, 1])

One can also send tensordict from device to device, place them in shared memory, clone them, update them in-place or not, split them, unbind them, expand them etc.

If a functionality is missing, it is easy to call it using apply() or apply_():

tensordict_uniform = tensordict.apply(lambda tensor: tensor.uniform_())

TensorDict for functional programming using FuncTorch

We also provide an API to use TensorDict in conjunction with FuncTorch. For instance, TensorDict makes it easy to concatenate model weights to do model ensembling:

from torch import nn
from tensordict import TensorDict
from copy import deepcopy
from tensordict.nn.functional_modules import FunctionalModule
import torch
from functorch import vmap
layer1 = nn.Linear(3, 4)
layer2 = nn.Linear(4, 4)
model1 = nn.Sequential(layer1, layer2)
model2 = deepcopy(model1)
# we represent the weights hierarchically
weights1 = TensorDict(model1.state_dict(), []).unflatten_keys(".")
weights2 = TensorDict(model2.state_dict(), []).unflatten_keys(".")
weights = torch.stack([weights1, weights2], 0)
fmodule, _ = FunctionalModule._create_from(model1)
# an input we'd like to pass through the model
x = torch.randn(10, 3)
y = vmap(fmodule, (0, None))(weights, x)
y.shape  # torch.Size([2, 10, 4])

Lazy preallocation

Pre-allocating tensors can be cumbersome and hard to scale if the list of preallocated items varies according to the script configuration. TensorDict solves this in an elegant way. Assume you are working with a function foo() -> TensorDict, e.g.

def foo():
    tensordict = TensorDict({}, batch_size=[])
    tensordict["a"] = torch.randn(3)
    tensordict["b"] = TensorDict({"c": torch.zeros(2)}, batch_size=[])
    return tensordict

and you would like to call this function repeatedly. You could do this in two ways. The first would simply be to stack the calls to the function:

tensordict = torch.stack([foo() for _ in range(N)])

However, you could also choose to preallocate the tensordict:

tensordict = TensorDict({}, batch_size=[N])
for i in range(N):
    tensordict[i] = foo()

which also results in a tensordict (when N = 10)

TensorDict(
    fields={
        a: Tensor(torch.Size([10, 3]), dtype=torch.float32),
        b: TensorDict(
            fields={
                c: Tensor(torch.Size([10, 2]), dtype=torch.float32)},
            batch_size=torch.Size([10]),
            device=None,
            is_shared=False)},
    batch_size=torch.Size([10]),
    device=None,
    is_shared=False)

When i==0, your empty tensordict will automatically be populated with empty tensors of batch-size N. After that, updates will be written in-place. Note that this would also work with a shuffled series of indices (pre-allocation does not require you to go through the tensordict in an ordered fashion).

Nesting TensorDicts

It is possible to nest tensordict. The only requirement is that the sub-tensordict should be indexable under the parent tensordict, i.e. its batch size should match (but could be longer than) the parent batch size.

We can switch easily between hierarchical and flat representations. For instance, the following code will result in a single-level tensordict with keys "key 1" and "key 2.sub-key":

>>> tensordict = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": TensorDict({"sub-key": torch.randn(3, 4, 5, 6)}, batch_size=[3, 4, 5])
... }, batch_size=[3, 4])
>>> tensordict_flatten = tensordict.flatten_keys(separator=".")

Accessing nested tensordicts can be achieved with a single index:

>>> sub_value = tensordict["key 2", "sub-key"]

Disclaimer

TensorDict is at the alpha-stage, meaning that there may be bc-breaking changes introduced at any moment without warranty. Hopefully that should not happen too often, as the current roadmap mostly involves adding new features and building compatibility with the broader pytorch ecosystem.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensordict_nightly-2022.11.23-py310-none-any.whl (80.9 kB view details)

Uploaded Python 3.10

tensordict_nightly-2022.11.23-py39-none-any.whl (80.9 kB view details)

Uploaded Python 3.9

tensordict_nightly-2022.11.23-py38-none-any.whl (80.9 kB view details)

Uploaded Python 3.8

tensordict_nightly-2022.11.23-py37-none-any.whl (80.9 kB view details)

Uploaded Python 3.7

File details

Details for the file tensordict_nightly-2022.11.23-py310-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.23-py310-none-any.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: Python 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.23-py310-none-any.whl
Algorithm Hash digest
SHA256 5b9bfa376fe1fc9b4024e58538a37449232ac720da65a6a05c4a4b2575ed1ee7
MD5 c7d3e7816b52df3d3cf0235358410446
BLAKE2b-256 83606ba6b03d4c5f9001f807afd02384de1d15ddb58d8d4a889777f667dbf5ed

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.23-py39-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.23-py39-none-any.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: Python 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.23-py39-none-any.whl
Algorithm Hash digest
SHA256 c75668f7155b19d46315ae01f9aa8ef474fa6823a786ce032a592494dd2a14e6
MD5 91a7193c3441c0406ac4fb5dca5998ee
BLAKE2b-256 38f48900553c89e4807d1fe44d0c2bd4fd0e3082a2252ad344f824374ac86c29

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.23-py38-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.23-py38-none-any.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.23-py38-none-any.whl
Algorithm Hash digest
SHA256 f3c7a955393b34e2e4c67646178379e798561c251128da085eebb017d09c5657
MD5 43cda874fed0aa8ced92e129c15e285b
BLAKE2b-256 70b6c79ec45818e8d30ab1da97a39a6cf0aa3106918c4d1564e2c62df8dae397

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.23-py37-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.23-py37-none-any.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: Python 3.7
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.23-py37-none-any.whl
Algorithm Hash digest
SHA256 94f88fe6f574332c4da0e267ecc265989a5ef26858995b2ce753f5680b3f2155
MD5 6449271d46de4ab6d770d14fa95ab0d1
BLAKE2b-256 a80a4afb06b23824275e8743daaa91ad23737ae9dd17d12935309233650cdf68

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page