Skip to main content

No project description provided

Project description

Documentation Python version GitHub license pypi version pypi nightly version Downloads Downloads

TensorDict

TensorDict is a dictionary-like class that inherits properties from tensors, such as indexing, shape operations, casting to device etc.

The main purpose of TensorDict is to make code-bases more readable and modular by abstracting away tailored operations:

for i, tensordict in enumerate(dataset):
    # the model reads and writes tensordicts
    tensordict = model(tensordict)
    loss = loss_module(tensordict)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

With this level of abstraction, one can recycle a training loop for highly heterogeneous task. Each individual step of the training loop (data collection and transform, model prediction, loss computation etc.) can be tailored to the use case at hand without impacting the others. For instance, the above example can be easily used across classification and segmentation tasks, among many others.

Installation

To install the latest stable version of tensordict, simply run

pip install tensordict

This will work with python 3.7 and upward as well as pytorch 1.12 and upward.

To enjoy the latest features, one can use

pip install tensordict-nightly

Features

General

A tensordict is primarily defined by its batch_size (or shape) and its key-value pairs:

from tensordict import TensorDict
import torch
tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])

The batch_size and the first dimensions of each of the tensors must be compliant. The tensors can be of any dtype and device. Optionally, one can restrict a tensordict to live on a dedicated device, which will send each tensor that is written there:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4], device="cuda:0")
tensordict["key 3"] = torch.randn(3, 4, device="cpu")
assert tensordict["key 3"].device is torch.device("cuda:0")

Tensor-like features

TensorDict objects can be indexed exactly like tensors. The resulting of indexing a TensorDict is another TensorDict containing tensors indexed along the required dimension:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])
sub_tensordict = tensordict[..., :2]
assert sub_tensordict.shape == torch.Size([3, 2])
assert sub_tensordict["key 1"].shape == torch.Size([3, 2, 5])

Similarly, one can build tensordicts by stacking or concatenating single tensordicts:

tensordicts = [TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4]) for _ in range(2)]
stack_tensordict = torch.stack(tensordicts, 1)
assert stack_tensordict.shape == torch.Size([3, 2, 4])
assert stack_tensordict["key 1"].shape == torch.Size([3, 2, 4, 5])
cat_tensordict = torch.cat(tensordicts, 0)
assert cat_tensordict.shape == torch.Size([6, 4])
assert cat_tensordict["key 1"].shape == torch.Size([6, 4, 5])

TensorDict instances can also be reshaped, viewed, squeezed and unsqueezed:

tensordict = TensorDict({
    "key 1": torch.ones(3, 4, 5),
    "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
}, batch_size=[3, 4])
print(tensordict.view(-1))  # prints torch.Size([12])
print(tensordict.reshape(-1))  # prints torch.Size([12])
print(tensordict.unsqueeze(-1))  # prints torch.Size([3, 4, 1])

One can also send tensordict from device to device, place them in shared memory, clone them, update them in-place or not, split them, unbind them, expand them etc.

If a functionality is missing, it is easy to call it using apply() or apply_():

tensordict_uniform = tensordict.apply(lambda tensor: tensor.uniform_())

TensorDict for functional programming using FuncTorch

We also provide an API to use TensorDict in conjunction with FuncTorch. For instance, TensorDict makes it easy to concatenate model weights to do model ensembling:

from torch import nn
from tensordict import TensorDict
from copy import deepcopy
from tensordict.nn.functional_modules import FunctionalModule
import torch
from functorch import vmap
layer1 = nn.Linear(3, 4)
layer2 = nn.Linear(4, 4)
model1 = nn.Sequential(layer1, layer2)
model2 = deepcopy(model1)
# we represent the weights hierarchically
weights1 = TensorDict(model1.state_dict(), []).unflatten_keys(".")
weights2 = TensorDict(model2.state_dict(), []).unflatten_keys(".")
weights = torch.stack([weights1, weights2], 0)
fmodule, _ = FunctionalModule._create_from(model1)
# an input we'd like to pass through the model
x = torch.randn(10, 3)
y = vmap(fmodule, (0, None))(weights, x)
y.shape  # torch.Size([2, 10, 4])

Lazy preallocation

Pre-allocating tensors can be cumbersome and hard to scale if the list of preallocated items varies according to the script configuration. TensorDict solves this in an elegant way. Assume you are working with a function foo() -> TensorDict, e.g.

def foo():
    tensordict = TensorDict({}, batch_size=[])
    tensordict["a"] = torch.randn(3)
    tensordict["b"] = TensorDict({"c": torch.zeros(2)}, batch_size=[])
    return tensordict

and you would like to call this function repeatedly. You could do this in two ways. The first would simply be to stack the calls to the function:

tensordict = torch.stack([foo() for _ in range(N)])

However, you could also choose to preallocate the tensordict:

tensordict = TensorDict({}, batch_size=[N])
for i in range(N):
    tensordict[i] = foo()

which also results in a tensordict (when N = 10)

TensorDict(
    fields={
        a: Tensor(torch.Size([10, 3]), dtype=torch.float32),
        b: TensorDict(
            fields={
                c: Tensor(torch.Size([10, 2]), dtype=torch.float32)},
            batch_size=torch.Size([10]),
            device=None,
            is_shared=False)},
    batch_size=torch.Size([10]),
    device=None,
    is_shared=False)

When i==0, your empty tensordict will automatically be populated with empty tensors of batch-size N. After that, updates will be written in-place. Note that this would also work with a shuffled series of indices (pre-allocation does not require you to go through the tensordict in an ordered fashion).

Nesting TensorDicts

It is possible to nest tensordict. The only requirement is that the sub-tensordict should be indexable under the parent tensordict, i.e. its batch size should match (but could be longer than) the parent batch size.

We can switch easily between hierarchical and flat representations. For instance, the following code will result in a single-level tensordict with keys "key 1" and "key 2.sub-key":

>>> tensordict = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": TensorDict({"sub-key": torch.randn(3, 4, 5, 6)}, batch_size=[3, 4, 5])
... }, batch_size=[3, 4])
>>> tensordict_flatten = tensordict.flatten_keys(separator=".")

Accessing nested tensordicts can be achieved with a single index:

>>> sub_value = tensordict["key 2", "sub-key"]

Disclaimer

TensorDict is at the alpha-stage, meaning that there may be bc-breaking changes introduced at any moment without warranty. Hopefully that should not happen too often, as the current roadmap mostly involves adding new features and building compatibility with the broader pytorch ecosystem.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensordict_nightly-2022.11.27-py310-none-any.whl (84.0 kB view details)

Uploaded Python 3.10

tensordict_nightly-2022.11.27-py39-none-any.whl (84.0 kB view details)

Uploaded Python 3.9

tensordict_nightly-2022.11.27-py38-none-any.whl (84.0 kB view details)

Uploaded Python 3.8

tensordict_nightly-2022.11.27-py37-none-any.whl (84.0 kB view details)

Uploaded Python 3.7

File details

Details for the file tensordict_nightly-2022.11.27-py310-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.27-py310-none-any.whl
  • Upload date:
  • Size: 84.0 kB
  • Tags: Python 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.27-py310-none-any.whl
Algorithm Hash digest
SHA256 bccd46b9b30bad01429a8e7ade4dd73c7e61485e4a1cd151c6b2d31199f61fe3
MD5 baf41a730ea4662b6d23360d111b164b
BLAKE2b-256 f156c6938c3f5a8858a65fff7eb04d15169e6ddf0c779336e6dc5aeca95819b2

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.27-py39-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.27-py39-none-any.whl
  • Upload date:
  • Size: 84.0 kB
  • Tags: Python 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.27-py39-none-any.whl
Algorithm Hash digest
SHA256 87f8f71d576e2ad041cd22e72c6bf4eaa10b9346c8b8e691ddfeb28e9af88302
MD5 cfd886b280bb99e9004527fea928c61e
BLAKE2b-256 6e5013398c29cc8c215dca1f78e5f52cc42373546b4f26a2ee6e68603f56bf70

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.27-py38-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.27-py38-none-any.whl
  • Upload date:
  • Size: 84.0 kB
  • Tags: Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.27-py38-none-any.whl
Algorithm Hash digest
SHA256 e99535196bc8fbc5e61ae868f9148f1d397cb86829add1aa091822e5c2558c25
MD5 9310d9b0d357676cfe9e1773642904be
BLAKE2b-256 8fa4818f26b3b8c24f8f686bb3cf3715ea550b81a23b96feee8c0aa4f0332bc1

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.11.27-py37-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.11.27-py37-none-any.whl
  • Upload date:
  • Size: 84.0 kB
  • Tags: Python 3.7
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.11.27-py37-none-any.whl
Algorithm Hash digest
SHA256 0c1ab5c0cf283b088c9a6c0c86ddedb336f9f0c45e28c28bd6f256fa49723dce
MD5 4b3df0a46f6ef852d65dd169e76bca9d
BLAKE2b-256 4982212c56766a3c5af74138dc5176143fc163f279ab63ffab8e78933995dd2a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page