Skip to main content

No project description provided

Project description

Documentation Python version GitHub license pypi version pypi nightly version Downloads Downloads

TensorDict

TensorDict is a dictionary-like class that inherits properties from tensors, such as indexing, shape operations, casting to device etc.

The main purpose of TensorDict is to make code-bases more readable and modular by abstracting away tailored operations:

for i, tensordict in enumerate(dataset):
    # the model reads and writes tensordicts
    tensordict = model(tensordict)
    loss = loss_module(tensordict)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

With this level of abstraction, one can recycle a training loop for highly heterogeneous task. Each individual step of the training loop (data collection and transform, model prediction, loss computation etc.) can be tailored to the use case at hand without impacting the others. For instance, the above example can be easily used across classification and segmentation tasks, among many others.

Installation

To install the latest stable version of tensordict, simply run

pip install tensordict

This will work with python 3.7 and upward as well as pytorch 1.12 and upward.

To enjoy the latest features, one can use

pip install tensordict-nightly

Features

General

A tensordict is primarily defined by its batch_size (or shape) and its key-value pairs:

>>> from tensordict import TensorDict
>>> import torch
>>> tensordict = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4])

The batch_size and the first dimensions of each of the tensors must be compliant. The tensors can be of any dtype and device. Optionally, one can restrict a tensordict to live on a dedicated device, which will send each tensor that is written there:

>>> tensordict = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4], device="cuda:0")
>>> tensordict["key 3"] = torch.randn(3, 4, device="cpu")
>>> assert tensordict["key 3"].device is torch.device("cuda:0")

Tensor-like features

TensorDict objects can be indexed exactly like tensors. The resulting of indexing a TensorDict is another TensorDict containing tensors indexed along the required dimension:

>>> tensordict = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4])
>>> sub_tensordict = tensordict[..., :2]
>>> assert sub_tensordict.shape == torch.Size([3, 2])
>>> assert sub_tensordict["key 1"].shape == torch.Size([3, 2, 5])

Similarly, one can build tensordicts by stacking or concatenating single tensordicts:

>>> tensordicts = [TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4]) for _ in range(2)]
>>> stack_tensordict = torch.stack(tensordicts, 1)
>>> assert stack_tensordict.shape == torch.Size([3, 2, 4])
>>> assert stack_tensordict["key 1"].shape == torch.Size([3, 2, 4, 5])
>>> cat_tensordict = torch.cat(tensordicts, 0)
>>> assert cat_tensordict.shape == torch.Size([6, 4])
>>> assert cat_tensordict["key 1"].shape == torch.Size([6, 4, 5])

TensorDict instances can also be reshaped, viewed, squeezed and unsqueezed:

>>> tensordict = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4])
>>> print(tensordict.view(-1))
torch.Size([12])
>>> print(tensordict.reshape(-1))
torch.Size([12])
>>> print(tensordict.unsqueeze(-1))
torch.Size([3, 4, 1])

One can also send tensordict from device to device, place them in shared memory, clone them, update them in-place or not, split them, unbind them, expand them etc.

If a functionality is missing, it is easy to call it using apply() or apply_():

tensordict_uniform = tensordict.apply(lambda tensor: tensor.uniform_())

TensorDict for functional programming using FuncTorch

We also provide an API to use TensorDict in conjunction with FuncTorch. For instance, TensorDict makes it easy to concatenate model weights to do model ensembling:

>>> from torch import nn
>>> from tensordict import TensorDict
>>> from tensordict.nn import make_functional
>>> import torch
>>> from functorch import vmap
>>> layer1 = nn.Linear(3, 4)
>>> layer2 = nn.Linear(4, 4)
>>> model = nn.Sequential(layer1, layer2)
>>> # we represent the weights hierarchically
>>> weights1 = TensorDict(layer1.state_dict(), []).unflatten_keys(".")
>>> weights2 = TensorDict(layer2.state_dict(), []).unflatten_keys(".")
>>> params = make_functional(model)
>>> assert (params == TensorDict({"0": weights1, "1": weights2}, [])).all()
>>> # Let's use our functional module
>>> x = torch.randn(10, 3)
>>> out = model(x, params=params)  # params is the last arg (or kwarg)
>>> # an ensemble of models: we stack params along the first dimension...
>>> params_stack = torch.stack([params, params], 0)
>>> # ... and use it as an input we'd like to pass through the model
>>> y = vmap(model, (None, 0))(x, params_stack)
>>> print(y.shape)
torch.Size([2, 10, 4])

Lazy preallocation

Pre-allocating tensors can be cumbersome and hard to scale if the list of preallocated items varies according to the script configuration. TensorDict solves this in an elegant way. Assume you are working with a function foo() -> TensorDict, e.g.

def foo():
    tensordict = TensorDict({}, batch_size=[])
    tensordict["a"] = torch.randn(3)
    tensordict["b"] = TensorDict({"c": torch.zeros(2)}, batch_size=[])
    return tensordict

and you would like to call this function repeatedly. You could do this in two ways. The first would simply be to stack the calls to the function:

tensordict = torch.stack([foo() for _ in range(N)])

However, you could also choose to preallocate the tensordict:

tensordict = TensorDict({}, batch_size=[N])
for i in range(N):
    tensordict[i] = foo()

which also results in a tensordict (when N = 10)

TensorDict(
    fields={
        a: Tensor(torch.Size([10, 3]), dtype=torch.float32),
        b: TensorDict(
            fields={
                c: Tensor(torch.Size([10, 2]), dtype=torch.float32)},
            batch_size=torch.Size([10]),
            device=None,
            is_shared=False)},
    batch_size=torch.Size([10]),
    device=None,
    is_shared=False)

When i==0, your empty tensordict will automatically be populated with empty tensors of batch-size N. After that, updates will be written in-place. Note that this would also work with a shuffled series of indices (pre-allocation does not require you to go through the tensordict in an ordered fashion).

Nesting TensorDicts

It is possible to nest tensordict. The only requirement is that the sub-tensordict should be indexable under the parent tensordict, i.e. its batch size should match (but could be longer than) the parent batch size.

We can switch easily between hierarchical and flat representations. For instance, the following code will result in a single-level tensordict with keys "key 1" and "key 2.sub-key":

>>> tensordict = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": TensorDict({"sub-key": torch.randn(3, 4, 5, 6)}, batch_size=[3, 4, 5])
... }, batch_size=[3, 4])
>>> tensordict_flatten = tensordict.flatten_keys(separator=".")

Accessing nested tensordicts can be achieved with a single index:

>>> sub_value = tensordict["key 2", "sub-key"]

Disclaimer

TensorDict is at the alpha-stage, meaning that there may be bc-breaking changes introduced at any moment without warranty. Hopefully that should not happen too often, as the current roadmap mostly involves adding new features and building compatibility with the broader pytorch ecosystem.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensordict_nightly-2022.12.27-py310-none-any.whl (90.1 kB view details)

Uploaded Python 3.10

tensordict_nightly-2022.12.27-py39-none-any.whl (90.1 kB view details)

Uploaded Python 3.9

tensordict_nightly-2022.12.27-py38-none-any.whl (90.1 kB view details)

Uploaded Python 3.8

tensordict_nightly-2022.12.27-py37-none-any.whl (90.1 kB view details)

Uploaded Python 3.7

File details

Details for the file tensordict_nightly-2022.12.27-py310-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.12.27-py310-none-any.whl
  • Upload date:
  • Size: 90.1 kB
  • Tags: Python 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.12.27-py310-none-any.whl
Algorithm Hash digest
SHA256 368ff1ea53f72c9bc652841a5f67dac25d30691c4299d949300a6366b1e523a1
MD5 78d9b38da5c5f29f0c264bdd300d850e
BLAKE2b-256 8d11a631c676ef9b48df6fd4ca6a3b3065ff5f49ad8f49c96ec4de5961fae076

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.12.27-py39-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.12.27-py39-none-any.whl
  • Upload date:
  • Size: 90.1 kB
  • Tags: Python 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.12.27-py39-none-any.whl
Algorithm Hash digest
SHA256 238b2ca1894925972c543fddc9f84daca18c3b3cc6dd76c8b9cdcd0f53be369c
MD5 22ae8614675d9ce83d473838245205f5
BLAKE2b-256 9896c1d85a10d50a145512fe52acffc194e4f31256ddfb82508aeb7d437797f1

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.12.27-py38-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.12.27-py38-none-any.whl
  • Upload date:
  • Size: 90.1 kB
  • Tags: Python 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.12.27-py38-none-any.whl
Algorithm Hash digest
SHA256 c8b6b67f879580be1cfa89fe33c62d33babd49af795aa4e5f201fd6754b126fa
MD5 3da61a92d03e49de6ee95e1f1f635897
BLAKE2b-256 7d5da0aa3ce12015759d2a7f230ee3feb9dc8b9a527bdb5916e52e18fe055920

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2022.12.27-py37-none-any.whl.

File metadata

  • Download URL: tensordict_nightly-2022.12.27-py37-none-any.whl
  • Upload date:
  • Size: 90.1 kB
  • Tags: Python 3.7
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/44.1.1 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.17

File hashes

Hashes for tensordict_nightly-2022.12.27-py37-none-any.whl
Algorithm Hash digest
SHA256 84bb4ea7085e7a32c20deda66d74ecd0af2af802f4978a738392b08e0817a4e0
MD5 08fe590a97420229a9dd7a9ec097842c
BLAKE2b-256 e825dfe06ed8987c4b6226cd624d6af5355972fd410414d336a020a5711e5a23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page