Skip to main content

No project description provided

Project description

Docs - GitHub.io Discord Shield Benchmarks Python version GitHub license pypi version pypi nightly version Downloads Downloads codecov circleci Conda - Platform Conda (channel only)

TensorDict

Installation | General features | Tensor-like features | Distributed capabilities | TensorDict for functional programming | **TensorDict for parameter serialization | Lazy preallocation | Nesting TensorDicts | TensorClass

TensorDict is a dictionary-like class that inherits properties from tensors, such as indexing, shape operations, casting to device or point-to-point communication in distributed settings. Whenever you need to execute an operation over a batch of tensors, TensorDict is there to help you.

The primary goal of TensorDict is to make your code-bases more readable, compact, and modular. It abstracts away tailored operations, making your code less error-prone as it takes care of dispatching the operation on the leaves for you.

Using tensordict primitives, most supervised training loops can be rewritten in a generic way:

for i, data in enumerate(dataset):
    # the model reads and writes tensordicts
    data = model(data)
    loss = loss_module(data)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

With this level of abstraction, one can recycle a training loop for highly heterogeneous task. Each individual step of the training loop (data collection and transform, model prediction, loss computation etc.) can be tailored to the use case at hand without impacting the others. For instance, the above example can be easily used across classification and segmentation tasks, among many others.

Features

General principles

Unlike other pytrees, TensorDict carries metadata that make it easy to query the state of the container. The main metadata are the batch_size (also referred as shape), the device, the shared status (is_memmap or is_shared), the dimension names and the lock status.

A tensordict is primarily defined by its batch_size (or shape) and its key-value pairs:

>>> from tensordict import TensorDict
>>> import torch
>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4])

The batch_size and the first dimensions of each of the tensors must be compliant. The tensors can be of any dtype and device.

Optionally, one can restrict a tensordict to live on a dedicated device, which will send each tensor that is written there:

>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4], device="cuda:0")

When a tensordict has a device, all write operations will cast the tensor to the TensorDict device:

>>> data["key 3"] = torch.randn(3, 4, device="cpu")
>>> assert data["key 3"].device is torch.device("cuda:0")

Once the device is set, it can be cleared with the clear_device_ method.

TensorDict as a specialized dictionary

TensorDict possesses all the basic features of a dictionary such as clear, copy, fromkeys, get, items, keys, pop, popitem, setdefault, update and values.

But that is not all, you can also store nested values in a tensordict:

>>> data["nested", "key"] = torch.zeros(3, 4) # the batch-size must match

and any nested tuple structure will be unravelled to make it easy to read code and write ops programmatically:

>>> data["nested", ("supernested", ("key",))] = torch.zeros(3, 4) # the batch-size must match
>>> assert (data["nested", "supernested", "key"] == 0).all()
>>> assert (("nested",), "supernested", (("key",),)) in data.keys(include_nested=True)  # this works too!

You can also store non-tensor data in tensordicts:

>>> data = TensorDict({"a-tensor": torch.randn(1, 2)}, batch_size=[1, 2])
>>> data["non-tensor"] = "a string!"
>>> assert data["non-tensor"] == "a string!"

Tensor-like features

[Nightly feature] TensorDict supports many common point-wise arithmetic operations such as == or +, += and similar (provided that the underlying tensors support the said operation):

>>> td = TensorDict.fromkeys(["a", "b", "c"], 0)
>>> td += 1
>>> assert (td==1).all()

TensorDict objects can be indexed exactly like tensors. The resulting of indexing a TensorDict is another TensorDict containing tensors indexed along the required dimension:

>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4])
>>> sub_tensordict = data[..., :2]
>>> assert sub_tensordict.shape == torch.Size([3, 2])
>>> assert sub_tensordict["key 1"].shape == torch.Size([3, 2, 5])

Similarly, one can build tensordicts by stacking or concatenating single tensordicts:

>>> tensordicts = [TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4]) for _ in range(2)]
>>> stack_tensordict = torch.stack(tensordicts, 1)
>>> assert stack_tensordict.shape == torch.Size([3, 2, 4])
>>> assert stack_tensordict["key 1"].shape == torch.Size([3, 2, 4, 5])
>>> cat_tensordict = torch.cat(tensordicts, 0)
>>> assert cat_tensordict.shape == torch.Size([6, 4])
>>> assert cat_tensordict["key 1"].shape == torch.Size([6, 4, 5])

TensorDict instances can also be reshaped, viewed, squeezed and unsqueezed:

>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4])
>>> print(data.view(-1))
torch.Size([12])
>>> print(data.reshape(-1))
torch.Size([12])
>>> print(data.unsqueeze(-1))
torch.Size([3, 4, 1])

One can also send tensordict from device to device, place them in shared memory, clone them, update them in-place or not, split them, unbind them, expand them etc.

If a functionality is missing, it is easy to call it using apply() or apply_():

tensordict_uniform = data.apply(lambda tensor: tensor.uniform_())

apply() can also be great to filter a tensordict, for instance:

data = TensorDict({"a": torch.tensor(1.0, dtype=torch.float), "b": torch.tensor(1, dtype=torch.int64)}, [])
data_float = data.apply(lambda x: x if x.dtype == torch.float else None) # contains only the "a" key
assert "b" not in data_float

Distributed capabilities

Complex data structures can be cumbersome to synchronize in distributed settings. tensordict solves that problem with synchronous and asynchronous helper methods such as recv, irecv, send and isend that behave like their torch.distributed counterparts:

>>> # on all workers
>>> data = TensorDict({"a": torch.zeros(()), ("b", "c"): torch.ones(())}, [])
>>> # on worker 1
>>> data.isend(dst=0)
>>> # on worker 0
>>> data.irecv(src=1)

When nodes share a common scratch space, the MemmapTensor backend can be used to seamlessly send, receive and read a huge amount of data.

TensorDict for functional programming

We also provide an API to use TensorDict in conjunction with FuncTorch. For instance, TensorDict makes it easy to concatenate model weights to do model ensembling:

>>> from torch import nn
>>> from tensordict import TensorDict
>>> import torch
>>> from torch import vmap
>>> layer1 = nn.Linear(3, 4)
>>> layer2 = nn.Linear(4, 4)
>>> model = nn.Sequential(layer1, layer2)
>>> params = TensorDict.from_module(model)
>>> # we represent the weights hierarchically
>>> weights1 = TensorDict(layer1.state_dict(), []).unflatten_keys(".")
>>> weights2 = TensorDict(layer2.state_dict(), []).unflatten_keys(".")
>>> assert (params == TensorDict({"0": weights1, "1": weights2}, [])).all()
>>> # Let's use our functional module
>>> x = torch.randn(10, 3)
>>> with params.to_module(model):
...     out = model(x)
>>> # an ensemble of models: we stack params along the first dimension...
>>> params_stack = torch.stack([params, params], 0)
>>> # ... and use it as an input we'd like to pass through the model
>>> def func(x, params):
...     with params.to_module(model):
...         return model(x)
>>> y = vmap(func, (None, 0))(x, params_stack)
>>> print(y.shape)
torch.Size([2, 10, 4])

Moreover, tensordict modules are compatible with torch.fx and (soon) torch.compile, which means that you can get the best of both worlds: a codebase that is both readable and future-proof as well as efficient and portable!

TensorDict for parameter serialization and building datasets

TensorDict offers an API for parameter serialization that can be >3x faster than regular calls to torch.save(state_dict). Moreover, because tensors will be saved independently on disk, you can deserialize your checkpoint on an arbitrary slice of the model.

>>> model = nn.Sequential(nn.Linear(3, 4), nn.Linear(4, 3))
>>> params = TensorDict.from_module(model)
>>> params.memmap("/path/to/saved/folder/", num_threads=16)  # adjust num_threads for speed
>>> # load params
>>> params = TensorDict.load_memmap("/path/to/saved/folder/", num_threads=16)
>>> params.to_module(model)  # load onto model
>>> params["0"].to_module(model[0])  # load on a slice of the model
>>> # in the latter case we could also have loaded only the slice we needed
>>> params0 = TensorDict.load_memmap("/path/to/saved/folder/0", num_threads=16)
>>> params0.to_module(model[0])  # load on a slice of the model

The same functionality can be used to access data in a dataset stored on disk. Soring a single contiguous tensor on disk accessed through the tensordict.MemoryMappedTensor primitive and reading slices of it is not only much faster than loading single files one at a time but it's also easier and safer (because there is no pickling or third-party library involved):

# allocate memory of the dataset on disk
data = TensorDict({
    "images": torch.zeros((128, 128, 3), dtype=torch.uint8),
    "labels": torch.zeros((), dtype=torch.int)}, batch_size=[])
data = data.expand(1000000)
data = data.memmap_like("/path/to/dataset")
# ==> Fill your dataset here
# Let's get 3 items of our dataset:
data[torch.tensor([1, 10000, 500000])]  # This is much faster than loading the 3 images independently

Preprocessing with TensorDict.map

Preprocessing huge contiguous (or not!) datasets can be done via TensorDict.map which will dispatch a task to various workers:

import torch
from tensordict import TensorDict, MemoryMappedTensor
import tempfile

def process_data(data):
    images = data.get("images").flip(-2).clone()
    labels = data.get("labels") // 10
    # we update the td inplace
    data.set_("images", images)  # flip image
    data.set_("labels", labels)  # cluster labels

if __name__ == "__main__":
    # create data_preproc here
    data_preproc = data.map(process_data, num_workers=4, chunksize=0, pbar=True)  # process 1 images at a time

Lazy preallocation

Pre-allocating tensors can be cumbersome and hard to scale if the list of preallocated items varies according to the script configuration. TensorDict solves this in an elegant way. Assume you are working with a function foo() -> TensorDict, e.g.

def foo():
    data = TensorDict({}, batch_size=[])
    data["a"] = torch.randn(3)
    data["b"] = TensorDict({"c": torch.zeros(2)}, batch_size=[])
    return data

and you would like to call this function repeatedly. You could do this in two ways. The first would simply be to stack the calls to the function:

data = torch.stack([foo() for _ in range(N)])

However, you could also choose to preallocate the tensordict:

data = TensorDict({}, batch_size=[N])
for i in range(N):
    data[i] = foo()

which also results in a tensordict (when N = 10)

TensorDict(
    fields={
        a: Tensor(torch.Size([10, 3]), dtype=torch.float32),
        b: TensorDict(
            fields={
                c: Tensor(torch.Size([10, 2]), dtype=torch.float32)},
            batch_size=torch.Size([10]),
            device=None,
            is_shared=False)},
    batch_size=torch.Size([10]),
    device=None,
    is_shared=False)

When i==0, your empty tensordict will automatically be populated with empty tensors of batch-size N. After that, updates will be written in-place. Note that this would also work with a shuffled series of indices (pre-allocation does not require you to go through the tensordict in an ordered fashion).

Nesting TensorDicts

It is possible to nest tensordict. The only requirement is that the sub-tensordict should be indexable under the parent tensordict, i.e. its batch size should match (but could be longer than) the parent batch size.

We can switch easily between hierarchical and flat representations. For instance, the following code will result in a single-level tensordict with keys "key 1" and "key 2.sub-key":

>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": TensorDict({"sub-key": torch.randn(3, 4, 5, 6)}, batch_size=[3, 4, 5])
... }, batch_size=[3, 4])
>>> tensordict_flatten = data.flatten_keys(separator=".")

Accessing nested tensordicts can be achieved with a single index:

>>> sub_value = data["key 2", "sub-key"]

TensorClass

Content flexibility comes at the cost of predictability. In some cases, developers may be looking for data structure with a more explicit behavior. tensordict provides a dataclass-like decorator that allows for the creation of custom dataclasses that support the tensordict operations:

>>> from tensordict.prototype import tensorclass
>>> import torch
>>>
>>> @tensorclass
... class MyData:
...    image: torch.Tensor
...    mask: torch.Tensor
...    label: torch.Tensor
...
...    def mask_image(self):
...        return self.image[self.mask.expand_as(self.image)].view(*self.batch_size, -1)
...
...    def select_label(self, label):
...        return self[self.label == label]
...
>>> images = torch.randn(100, 3, 64, 64)
>>> label = torch.randint(10, (100,))
>>> mask = torch.zeros(1, 64, 64, dtype=torch.bool).bernoulli_().expand(100, 1, 64, 64)
>>>
>>> data = MyData(images, mask, label=label, batch_size=[100])
>>>
>>> print(data.select_label(1))
MyData(
    image=Tensor(torch.Size([11, 3, 64, 64]), dtype=torch.float32),
    label=Tensor(torch.Size([11]), dtype=torch.int64),
    mask=Tensor(torch.Size([11, 1, 64, 64]), dtype=torch.bool),
    batch_size=torch.Size([11]),
    device=None,
    is_shared=False)
>>> print(data.mask_image().shape)
torch.Size([100, 6117])
>>> print(data.reshape(10, 10))
MyData(
    image=Tensor(torch.Size([10, 10, 3, 64, 64]), dtype=torch.float32),
    label=Tensor(torch.Size([10, 10]), dtype=torch.int64),
    mask=Tensor(torch.Size([10, 10, 1, 64, 64]), dtype=torch.bool),
    batch_size=torch.Size([10, 10]),
    device=None,
    is_shared=False)

As this example shows, one can write a specific data structures with dedicated methods while still enjoying the TensorDict artifacts such as shape operations (e.g. reshape or permutations), data manipulation (indexing, cat and stack) or calling arbitrary functions through the apply method (and many more).

Tensorclasses support nesting and, in fact, all the TensorDict features.

Installation

With Pip:

To install the latest stable version of tensordict, simply run

pip install tensordict

This will work with Python 3.7 and upward as well as PyTorch 1.12 and upward.

To enjoy the latest features, one can use

pip install tensordict-nightly

With Conda:

Install tensordict from conda-forge channel.

conda install -c conda-forge tensordict

Citation

If you're using TensorDict, please refer to this BibTeX entry to cite this work:

@misc{bou2023torchrl,
      title={TorchRL: A data-driven decision-making library for PyTorch}, 
      author={Albert Bou and Matteo Bettini and Sebastian Dittert and Vikash Kumar and Shagun Sodhani and Xiaomeng Yang and Gianni De Fabritiis and Vincent Moens},
      year={2023},
      eprint={2306.00577},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Disclaimer

TensorDict is at the beta-stage, meaning that there may be bc-breaking changes introduced, but they should come with a warranty. Hopefully these should not happen too often, as the current roadmap mostly involves adding new features and building compatibility with the broader PyTorch ecosystem.

License

TensorDict is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensordict_nightly-2024.6.15-cp311-cp311-win_amd64.whl (300.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

tensordict_nightly-2024.6.15-cp310-cp310-win_amd64.whl (299.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

tensordict_nightly-2024.6.15-cp39-cp39-win_amd64.whl (299.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

tensordict_nightly-2024.6.15-cp38-cp38-win_amd64.whl (300.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

File details

Details for the file tensordict_nightly-2024.6.15-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.15-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 312ff19f4e2df5f5e2fd377e56e6cab618ba1f496b303119fade70e20f6335fc
MD5 96460f5751847448f401616c503b23dd
BLAKE2b-256 899930f7d067c64834750ea186f271beefebe5d727d6b8b45e758c950d1d43ba

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.15-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.15-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1e96e0f9a7e51fd8ab301dd87f30d36a23fa5ab508f1e264cfc821e1ac7582f1
MD5 e98a2f5e84a100255e8724b9a44db84e
BLAKE2b-256 5a7e1b2ac92a7d65a7eff5e4f823860a92c0d0557729f5879ce3fd62f3e67a97

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.15-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.15-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1dcb3af58501edcbe116f0bb2e78e7c2916a42557d06bf784be3957dd2c4b5b1
MD5 2ca1245ebbfe224c43a95c9ce4292ff0
BLAKE2b-256 b07f39f169b749b8eff898410bcba09da60b4d5db90f76289ed36068ccb21448

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.15-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.15-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4a1c593b2a382c4df8fb681cbff836ae1728f6ece21f1ae0afff77f612f2fa3c
MD5 b83bd95fd89701bf48ec9848d7a2d4e1
BLAKE2b-256 871cfb2dd376d4144b2f9a399620947bf4bef1099e272e0f935dcc2246a6cd81

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.15-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.15-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 145624d7aecc1cdfd51c3d551aec8c91f948e8ba80946c60c0e2c16a6d41b31e
MD5 77ad3dd97c74ee69bed9eb8ef64ffd1a
BLAKE2b-256 3fd75fc98a6b0a4794e932e46e5c3adc3ce231db48e840d1d209f166fa8b274e

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.15-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.15-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5203c56028705345d6c4a92bc8da1d712b625678ca2ed416c62f7b402e854242
MD5 822f6050e72ea84c073fe38054c7b3ce
BLAKE2b-256 2b3bb1ec486fd193f80c9c0c16dd12c4090b9c3246a7d6f9147d29659edea365

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.15-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.15-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a5ed49e8df5e4477e86edfb2d81ab6d4f35fd2dc6ebb56557661ce8f2aebc01b
MD5 7010f34b516953b6c4e25f8d37aa52a8
BLAKE2b-256 74adffde86a57c6b5b2482c3434ba34e92e0fdae157dc783dca46b9867ad3d63

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.15-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.15-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a8481e08df2465afb68148b84ae58e568fb6b02b180818ffc3ea23fcdc381745
MD5 005069c01650d39ab0cae3735718544f
BLAKE2b-256 a7c0b51cfc4ccaf592fdfdb9152a7cceb9f0c790bd800cf428f3cf97c6b6375f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page