Skip to main content

No project description provided

Project description

Docs - GitHub.io Discord Shield Benchmarks Python version GitHub license pypi version pypi nightly version Downloads Downloads codecov circleci Conda - Platform Conda (channel only)

TensorDict

Installation | General features | Tensor-like features | Distributed capabilities | TensorDict for functional programming | **TensorDict for parameter serialization | Lazy preallocation | Nesting TensorDicts | TensorClass

TensorDict is a dictionary-like class that inherits properties from tensors, such as indexing, shape operations, casting to device or point-to-point communication in distributed settings. Whenever you need to execute an operation over a batch of tensors, TensorDict is there to help you.

The primary goal of TensorDict is to make your code-bases more readable, compact, and modular. It abstracts away tailored operations, making your code less error-prone as it takes care of dispatching the operation on the leaves for you.

Using tensordict primitives, most supervised training loops can be rewritten in a generic way:

for i, data in enumerate(dataset):
    # the model reads and writes tensordicts
    data = model(data)
    loss = loss_module(data)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

With this level of abstraction, one can recycle a training loop for highly heterogeneous task. Each individual step of the training loop (data collection and transform, model prediction, loss computation etc.) can be tailored to the use case at hand without impacting the others. For instance, the above example can be easily used across classification and segmentation tasks, among many others.

Features

General principles

Unlike other pytrees, TensorDict carries metadata that make it easy to query the state of the container. The main metadata are the batch_size (also referred as shape), the device, the shared status (is_memmap or is_shared), the dimension names and the lock status.

A tensordict is primarily defined by its batch_size (or shape) and its key-value pairs:

>>> from tensordict import TensorDict
>>> import torch
>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4])

The batch_size and the first dimensions of each of the tensors must be compliant. The tensors can be of any dtype and device.

Optionally, one can restrict a tensordict to live on a dedicated device, which will send each tensor that is written there:

>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4], device="cuda:0")

When a tensordict has a device, all write operations will cast the tensor to the TensorDict device:

>>> data["key 3"] = torch.randn(3, 4, device="cpu")
>>> assert data["key 3"].device is torch.device("cuda:0")

Once the device is set, it can be cleared with the clear_device_ method.

TensorDict as a specialized dictionary

TensorDict possesses all the basic features of a dictionary such as clear, copy, fromkeys, get, items, keys, pop, popitem, setdefault, update and values.

But that is not all, you can also store nested values in a tensordict:

>>> data["nested", "key"] = torch.zeros(3, 4) # the batch-size must match

and any nested tuple structure will be unravelled to make it easy to read code and write ops programmatically:

>>> data["nested", ("supernested", ("key",))] = torch.zeros(3, 4) # the batch-size must match
>>> assert (data["nested", "supernested", "key"] == 0).all()
>>> assert (("nested",), "supernested", (("key",),)) in data.keys(include_nested=True)  # this works too!

You can also store non-tensor data in tensordicts:

>>> data = TensorDict({"a-tensor": torch.randn(1, 2)}, batch_size=[1, 2])
>>> data["non-tensor"] = "a string!"
>>> assert data["non-tensor"] == "a string!"

Tensor-like features

[Nightly feature] TensorDict supports many common point-wise arithmetic operations such as == or +, += and similar (provided that the underlying tensors support the said operation):

>>> td = TensorDict.fromkeys(["a", "b", "c"], 0)
>>> td += 1
>>> assert (td==1).all()

TensorDict objects can be indexed exactly like tensors. The resulting of indexing a TensorDict is another TensorDict containing tensors indexed along the required dimension:

>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4])
>>> sub_tensordict = data[..., :2]
>>> assert sub_tensordict.shape == torch.Size([3, 2])
>>> assert sub_tensordict["key 1"].shape == torch.Size([3, 2, 5])

Similarly, one can build tensordicts by stacking or concatenating single tensordicts:

>>> tensordicts = [TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4]) for _ in range(2)]
>>> stack_tensordict = torch.stack(tensordicts, 1)
>>> assert stack_tensordict.shape == torch.Size([3, 2, 4])
>>> assert stack_tensordict["key 1"].shape == torch.Size([3, 2, 4, 5])
>>> cat_tensordict = torch.cat(tensordicts, 0)
>>> assert cat_tensordict.shape == torch.Size([6, 4])
>>> assert cat_tensordict["key 1"].shape == torch.Size([6, 4, 5])

TensorDict instances can also be reshaped, viewed, squeezed and unsqueezed:

>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": torch.zeros(3, 4, 5, dtype=torch.bool),
... }, batch_size=[3, 4])
>>> print(data.view(-1))
torch.Size([12])
>>> print(data.reshape(-1))
torch.Size([12])
>>> print(data.unsqueeze(-1))
torch.Size([3, 4, 1])

One can also send tensordict from device to device, place them in shared memory, clone them, update them in-place or not, split them, unbind them, expand them etc.

If a functionality is missing, it is easy to call it using apply() or apply_():

tensordict_uniform = data.apply(lambda tensor: tensor.uniform_())

apply() can also be great to filter a tensordict, for instance:

data = TensorDict({"a": torch.tensor(1.0, dtype=torch.float), "b": torch.tensor(1, dtype=torch.int64)}, [])
data_float = data.apply(lambda x: x if x.dtype == torch.float else None) # contains only the "a" key
assert "b" not in data_float

Distributed capabilities

Complex data structures can be cumbersome to synchronize in distributed settings. tensordict solves that problem with synchronous and asynchronous helper methods such as recv, irecv, send and isend that behave like their torch.distributed counterparts:

>>> # on all workers
>>> data = TensorDict({"a": torch.zeros(()), ("b", "c"): torch.ones(())}, [])
>>> # on worker 1
>>> data.isend(dst=0)
>>> # on worker 0
>>> data.irecv(src=1)

When nodes share a common scratch space, the MemmapTensor backend can be used to seamlessly send, receive and read a huge amount of data.

TensorDict for functional programming

We also provide an API to use TensorDict in conjunction with FuncTorch. For instance, TensorDict makes it easy to concatenate model weights to do model ensembling:

>>> from torch import nn
>>> from tensordict import TensorDict
>>> import torch
>>> from torch import vmap
>>> layer1 = nn.Linear(3, 4)
>>> layer2 = nn.Linear(4, 4)
>>> model = nn.Sequential(layer1, layer2)
>>> params = TensorDict.from_module(model)
>>> # we represent the weights hierarchically
>>> weights1 = TensorDict(layer1.state_dict(), []).unflatten_keys(".")
>>> weights2 = TensorDict(layer2.state_dict(), []).unflatten_keys(".")
>>> assert (params == TensorDict({"0": weights1, "1": weights2}, [])).all()
>>> # Let's use our functional module
>>> x = torch.randn(10, 3)
>>> with params.to_module(model):
...     out = model(x)
>>> # an ensemble of models: we stack params along the first dimension...
>>> params_stack = torch.stack([params, params], 0)
>>> # ... and use it as an input we'd like to pass through the model
>>> def func(x, params):
...     with params.to_module(model):
...         return model(x)
>>> y = vmap(func, (None, 0))(x, params_stack)
>>> print(y.shape)
torch.Size([2, 10, 4])

Moreover, tensordict modules are compatible with torch.fx and (soon) torch.compile, which means that you can get the best of both worlds: a codebase that is both readable and future-proof as well as efficient and portable!

TensorDict for parameter serialization and building datasets

TensorDict offers an API for parameter serialization that can be >3x faster than regular calls to torch.save(state_dict). Moreover, because tensors will be saved independently on disk, you can deserialize your checkpoint on an arbitrary slice of the model.

>>> model = nn.Sequential(nn.Linear(3, 4), nn.Linear(4, 3))
>>> params = TensorDict.from_module(model)
>>> params.memmap("/path/to/saved/folder/", num_threads=16)  # adjust num_threads for speed
>>> # load params
>>> params = TensorDict.load_memmap("/path/to/saved/folder/", num_threads=16)
>>> params.to_module(model)  # load onto model
>>> params["0"].to_module(model[0])  # load on a slice of the model
>>> # in the latter case we could also have loaded only the slice we needed
>>> params0 = TensorDict.load_memmap("/path/to/saved/folder/0", num_threads=16)
>>> params0.to_module(model[0])  # load on a slice of the model

The same functionality can be used to access data in a dataset stored on disk. Soring a single contiguous tensor on disk accessed through the tensordict.MemoryMappedTensor primitive and reading slices of it is not only much faster than loading single files one at a time but it's also easier and safer (because there is no pickling or third-party library involved):

# allocate memory of the dataset on disk
data = TensorDict({
    "images": torch.zeros((128, 128, 3), dtype=torch.uint8),
    "labels": torch.zeros((), dtype=torch.int)}, batch_size=[])
data = data.expand(1000000)
data = data.memmap_like("/path/to/dataset")
# ==> Fill your dataset here
# Let's get 3 items of our dataset:
data[torch.tensor([1, 10000, 500000])]  # This is much faster than loading the 3 images independently

Preprocessing with TensorDict.map

Preprocessing huge contiguous (or not!) datasets can be done via TensorDict.map which will dispatch a task to various workers:

import torch
from tensordict import TensorDict, MemoryMappedTensor
import tempfile

def process_data(data):
    images = data.get("images").flip(-2).clone()
    labels = data.get("labels") // 10
    # we update the td inplace
    data.set_("images", images)  # flip image
    data.set_("labels", labels)  # cluster labels

if __name__ == "__main__":
    # create data_preproc here
    data_preproc = data.map(process_data, num_workers=4, chunksize=0, pbar=True)  # process 1 images at a time

Lazy preallocation

Pre-allocating tensors can be cumbersome and hard to scale if the list of preallocated items varies according to the script configuration. TensorDict solves this in an elegant way. Assume you are working with a function foo() -> TensorDict, e.g.

def foo():
    data = TensorDict({}, batch_size=[])
    data["a"] = torch.randn(3)
    data["b"] = TensorDict({"c": torch.zeros(2)}, batch_size=[])
    return data

and you would like to call this function repeatedly. You could do this in two ways. The first would simply be to stack the calls to the function:

data = torch.stack([foo() for _ in range(N)])

However, you could also choose to preallocate the tensordict:

data = TensorDict({}, batch_size=[N])
for i in range(N):
    data[i] = foo()

which also results in a tensordict (when N = 10)

TensorDict(
    fields={
        a: Tensor(torch.Size([10, 3]), dtype=torch.float32),
        b: TensorDict(
            fields={
                c: Tensor(torch.Size([10, 2]), dtype=torch.float32)},
            batch_size=torch.Size([10]),
            device=None,
            is_shared=False)},
    batch_size=torch.Size([10]),
    device=None,
    is_shared=False)

When i==0, your empty tensordict will automatically be populated with empty tensors of batch-size N. After that, updates will be written in-place. Note that this would also work with a shuffled series of indices (pre-allocation does not require you to go through the tensordict in an ordered fashion).

Nesting TensorDicts

It is possible to nest tensordict. The only requirement is that the sub-tensordict should be indexable under the parent tensordict, i.e. its batch size should match (but could be longer than) the parent batch size.

We can switch easily between hierarchical and flat representations. For instance, the following code will result in a single-level tensordict with keys "key 1" and "key 2.sub-key":

>>> data = TensorDict({
...     "key 1": torch.ones(3, 4, 5),
...     "key 2": TensorDict({"sub-key": torch.randn(3, 4, 5, 6)}, batch_size=[3, 4, 5])
... }, batch_size=[3, 4])
>>> tensordict_flatten = data.flatten_keys(separator=".")

Accessing nested tensordicts can be achieved with a single index:

>>> sub_value = data["key 2", "sub-key"]

TensorClass

Content flexibility comes at the cost of predictability. In some cases, developers may be looking for data structure with a more explicit behavior. tensordict provides a dataclass-like decorator that allows for the creation of custom dataclasses that support the tensordict operations:

>>> from tensordict.prototype import tensorclass
>>> import torch
>>>
>>> @tensorclass
... class MyData:
...    image: torch.Tensor
...    mask: torch.Tensor
...    label: torch.Tensor
...
...    def mask_image(self):
...        return self.image[self.mask.expand_as(self.image)].view(*self.batch_size, -1)
...
...    def select_label(self, label):
...        return self[self.label == label]
...
>>> images = torch.randn(100, 3, 64, 64)
>>> label = torch.randint(10, (100,))
>>> mask = torch.zeros(1, 64, 64, dtype=torch.bool).bernoulli_().expand(100, 1, 64, 64)
>>>
>>> data = MyData(images, mask, label=label, batch_size=[100])
>>>
>>> print(data.select_label(1))
MyData(
    image=Tensor(torch.Size([11, 3, 64, 64]), dtype=torch.float32),
    label=Tensor(torch.Size([11]), dtype=torch.int64),
    mask=Tensor(torch.Size([11, 1, 64, 64]), dtype=torch.bool),
    batch_size=torch.Size([11]),
    device=None,
    is_shared=False)
>>> print(data.mask_image().shape)
torch.Size([100, 6117])
>>> print(data.reshape(10, 10))
MyData(
    image=Tensor(torch.Size([10, 10, 3, 64, 64]), dtype=torch.float32),
    label=Tensor(torch.Size([10, 10]), dtype=torch.int64),
    mask=Tensor(torch.Size([10, 10, 1, 64, 64]), dtype=torch.bool),
    batch_size=torch.Size([10, 10]),
    device=None,
    is_shared=False)

As this example shows, one can write a specific data structures with dedicated methods while still enjoying the TensorDict artifacts such as shape operations (e.g. reshape or permutations), data manipulation (indexing, cat and stack) or calling arbitrary functions through the apply method (and many more).

Tensorclasses support nesting and, in fact, all the TensorDict features.

Installation

With Pip:

To install the latest stable version of tensordict, simply run

pip install tensordict

This will work with Python 3.7 and upward as well as PyTorch 1.12 and upward.

To enjoy the latest features, one can use

pip install tensordict-nightly

With Conda:

Install tensordict from conda-forge channel.

conda install -c conda-forge tensordict

Citation

If you're using TensorDict, please refer to this BibTeX entry to cite this work:

@misc{bou2023torchrl,
      title={TorchRL: A data-driven decision-making library for PyTorch}, 
      author={Albert Bou and Matteo Bettini and Sebastian Dittert and Vikash Kumar and Shagun Sodhani and Xiaomeng Yang and Gianni De Fabritiis and Vincent Moens},
      year={2023},
      eprint={2306.00577},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Disclaimer

TensorDict is at the beta-stage, meaning that there may be bc-breaking changes introduced, but they should come with a warranty. Hopefully these should not happen too often, as the current roadmap mostly involves adding new features and building compatibility with the broader PyTorch ecosystem.

License

TensorDict is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensordict_nightly-2024.6.17-cp311-cp311-win_amd64.whl (300.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

tensordict_nightly-2024.6.17-cp310-cp310-win_amd64.whl (299.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

tensordict_nightly-2024.6.17-cp39-cp39-win_amd64.whl (299.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

tensordict_nightly-2024.6.17-cp38-cp38-win_amd64.whl (300.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

File details

Details for the file tensordict_nightly-2024.6.17-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.17-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 de5163f81a1bc19fc53153c479e7cc7b783680e6cd3bae4bec9947ee7caa1727
MD5 f51131dfe9d1a7f40e03363e97903371
BLAKE2b-256 2eca0c8a8270ffc23a54377de390b21124fdceeb1ed3b40a263762d2e0388070

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.17-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.17-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 edefc029db5e83cc9d8d0b7c8860871f059af63799a5acb22e2638b5686d4188
MD5 c7c6a3e0112e6edb218a1566ec092459
BLAKE2b-256 b96cd050df6c3c175aa3191c72ab079a29e30ff51b8f83d9b04e54d5d58415da

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.17-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.17-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 739cba60a0fba02bb8daf808355760f01c98c8542814ee31a0e81a6c6dace468
MD5 f41b621a0e2b592cbd033ae6397a9f23
BLAKE2b-256 6a05aa2d6e27bbb4557a150fd4ede403e9399fe598fd9176d310c05125bac89f

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.17-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.17-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 740e74079bbf078624cb211302b1e26e3b67c96a65f6ba1247eb4888b19b5dc0
MD5 7a88fb374768c81ef48a968456438785
BLAKE2b-256 f705d28ab8cf55dfd2ca48c39efe1bf79f667cd9f7bc4e278e11afd935b65997

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.17-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.17-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 23dd53944b8f0a487db0156e18ad8fb3043af5b8b59ca7db6d7f526420f78990
MD5 efa34567652bdb60849b2ca00a4087bd
BLAKE2b-256 8214e74b569946af6a80b6c548fef07b8ddaa04f7523b2aa4d6aeaa7ebf15793

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.17-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.17-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e7a96d0ff25c652a3554b31e86c2caa54e3bc957dd8cdeb6dbe3a6cc02709b8b
MD5 03db8abcbbd66bb9be53627a5c6ea468
BLAKE2b-256 baf641c77116ac8481d0ca2141b57c96bc5003a4725b94e720a4255809f027e6

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.17-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.17-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8d0113756a19b5c4b2ea95331c594c1b0ac88383195cf4eab24005f775d79b0c
MD5 ffe0c3db2a0876955003f71484df181c
BLAKE2b-256 08ed1704bde18e9c14d681bd4d64faa5b19e696085ebe446a8bda5c5db0ce47f

See more details on using hashes here.

File details

Details for the file tensordict_nightly-2024.6.17-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for tensordict_nightly-2024.6.17-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2bc48c26c6b18290ad5d71677e338d9289dfc519b330a32b5082c2c4dca23132
MD5 fc2c568f8dcffbb35f7b4b2ad249c5eb
BLAKE2b-256 dc60b2c6a4fee0e62bc7b31112fd54149286784b470b7833545c122cc97cfe1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page