A tool for visualize Tensorflow history result.
Project description
TensorflowHistoryPlot
A tool for visualize Tensorflow history result.
Install
pip install tensorflow-history-plot
Use
num_classes = 5
model = Sequential([
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
epochs = 10
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
from tensorflow_history_plot import show_acc
show_acc.plot(history)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file tensorflow_history_plot-0.1.2.tar.gz
.
File metadata
- Download URL: tensorflow_history_plot-0.1.2.tar.gz
- Upload date:
- Size: 3.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 353bb190625dad36706eedfa14b404e19a99f62b3ae86e51876e1fc0f2f45b91 |
|
MD5 | 986536804617aa1a11820f8c3888a0ce |
|
BLAKE2b-256 | 2b9faff21a3483ace3f464c43a1ec5c3a017a8fa4a591289620cf60e5cd5e76d |