Skip to main content

A tool for visualize Tensorflow history result.

Project description

TensorflowHistoryPlot

A tool for visualize Tensorflow history result.

Install

pip install tensorflow-history-plot

Use

num_classes = 5

model = Sequential([
    layers.Conv2D(16, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(32, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(64, 3, padding='same', activation='relu'),
    layers.MaxPooling2D(),
    layers.Flatten(),
    layers.Dense(128, activation='relu'),
    layers.Dense(num_classes)
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

epochs = 10
history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)

from tensorflow_history_plot import show_acc
show_acc.plot(history)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorflow_history_plot-0.1.2.tar.gz (3.6 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page