A tool for visualize Tensorflow history result.
Project description
TensorflowHistoryPlot
A tool for visualize Tensorflow history result.
Install
pip install tensorflow-history-plot
Use
num_classes = 5
model = Sequential([
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
epochs = 10
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
from tensorflow_history_plot import show_acc
show_acc.plot(history)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Close
Hashes for tensorflow_history_plot-0.1.2.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 353bb190625dad36706eedfa14b404e19a99f62b3ae86e51876e1fc0f2f45b91 |
|
MD5 | 986536804617aa1a11820f8c3888a0ce |
|
BLAKE2b-256 | 2b9faff21a3483ace3f464c43a1ec5c3a017a8fa4a591289620cf60e5cd5e76d |