Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 de3f391c186d24eb88ce39a9e702c8fed718959556efac81d499b5c3f745fe75
MD5 6d8dfe5586c12ac91ff79091a477244e
BLAKE2b-256 749f514f728c0c7084028ac70b3c7e0e26802547ac45ea66a1afc2cfc9e24b0c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3e14cf7cdead533dd55e2359b1a1f2dec1f4a3c0b2dfd7cbe15c82f2386ada53
MD5 692fe31efb38b5cc96d61a9e529e0aea
BLAKE2b-256 78eb8f462ef258ad4a2f2bb62be566bf2b1c221d2593a1c429efe449f59d1785

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0b164a39f59627889531fd0fa6b12c5cd80de4791cd83671b2649d51bcac1e7f
MD5 fbed675ee8483fd9ee379fe040571037
BLAKE2b-256 27d467fc59b61875499af888864093c265a6afd6680139cf6f18e0e709301166

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 17c1a40721e7545dc50c5eb5cf90c62f3ec776be60bbf9115b2118cfcff8ff78
MD5 8f81a0c8f360e2925fd2826daefb2518
BLAKE2b-256 55baba4d444c2e1e01721c6f4807e132698ccdb24fd77142ad2c995d7f162c2a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f258a06d48f6581e2c28000eba181ebed3fd6c99bb974a98579b7d8b4773ffad
MD5 2ea7ffc76e36353cba4a6adfdd82ea01
BLAKE2b-256 33bd2f4f93020fb1685952d0dd3f798da23812a9b4771d365ac40ac8f0c67884

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 302f4d9a41807fbe6f1f8fe8707afb8a430f6c9708578e9729f561abc941cec6
MD5 79cb4b85d8b7e38a364f4401550eec5a
BLAKE2b-256 926b1d42ba5cbb71185b614a12c7b50c7f116f7b1103b781ba7d18e9522e1644

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e45c450dd6744f1d4396f3cd022648b6a9c8a8c154b861a49befcd43b8fc47e2
MD5 a6f3512beb8a2610a2d6b2e64761c84a
BLAKE2b-256 b5fe7e075dca8ed11c91e7a4fb7eea4c3199098f7ef56dbbe87e49a153f26e3c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 59447b18c7b44587f8de36d093c82339c5798fb1b0caa6e7729584e046619cc4
MD5 03522003cd0d44b880eb24012bcf1583
BLAKE2b-256 ccbbf7a1f1c7ac456cd5b3dea0fb6dfb3740446f196f9e382d32f23593e443c8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 58702fb6b3c70862f6139730cb7f141b6e4fc2880738d3c2d866fdb153b158fe
MD5 ae3f369afc412a1e1783d126bb5322bf
BLAKE2b-256 bd851dd9f985aaed217bcbc73f40301b957c42a8a667e55075ae5733dc7dbf33

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 969707b55d218fdbb8d9b814ae107cc9b41b198e4fa9fc335c4fb6155a20cde9
MD5 7fdd8480df12b06d1d4993d5f9c143f1
BLAKE2b-256 ccea052d9c09e23508bcd79176dd40400217eb68bc11aa63d968f70c6473fa10

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a0f4a868f3701dd59710663e745a9eeaeb7122f10d2abc3dcf860d9b717b0d6a
MD5 7232a0c0cd8af887ea95c75fc1d83930
BLAKE2b-256 38300c54b8effbcf471a44fd1598f0784c8642b0b57a21680dd3e6e15f1714f8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210514080232-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 960feb819179b47df63456fd29be74892a4974b495ff07c20595dca24d1958a0
MD5 4f9887dcdc5f8f9a0f77e776f8f4b65b
BLAKE2b-256 6a7242c9ed5c42fa5df2f62065958d4f692c07bfafff312ab8c9bcfa5e6bf6b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page