Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e5b9a72eb5f5fd4b390bef39f2053860fb509ed9eb220ef996c28017e243325a
MD5 d4a26156ce03f26f33c96587f9dbc864
BLAKE2b-256 a6822ea252e9f27fab789d5e92ad1c949a9b946d470e106781ec1ccc57674e9d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9fbb211a5bb6b5e0fbfaa2b652130b58a0f48148f50880f116226c8de9ccc7aa
MD5 8396840261bf43319995aa5e7596068f
BLAKE2b-256 3ce792c7628312c3232445e0c636ccfb3eeced7b97c09e6376314e44a61275d6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6c61863a594dad2a2ceba817034fd3f71428daab4d4b4dcbf721970ebf5d73db
MD5 21d33c9e04295793e53d9e9bcf368367
BLAKE2b-256 aa9daf310eff6f722ca8f932c9ed61a839f83a14ee7ee75f2cabc94d79b9ca52

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c65d670790af59cdc335ec298ccf5492715b2af67c5b5cc9c9370a1da7696e47
MD5 94642d3466aba27d7ab2cfac3650d91f
BLAKE2b-256 ebc4048ad3a6b5cad4d5da8a4d42394132584055bf3dd47caebc2ca793b8a34d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c884a4090fecab1b1b50260651fbef13b7cf2b91be67fd9f158b659fd9685a36
MD5 385dfe368a87d44931d984d6ca84fb27
BLAKE2b-256 212cecc02a254a62379ffc2ccba51770a28aa6dfb45d6931859f99a0859e8b7f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 774e00db4debabdaed0f451907379f963e30280d77a1230eb0e1a6bcf8e4f0b0
MD5 8ed1bf1b6b939c145d609add8829431e
BLAKE2b-256 051df92a1c92784b169ff13b5417f62d588fa0f40e66fa3e3c7331e15f228920

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e5265aa9f37abc85c209c4b9f28cf4ea203f90a6f73ea35313c33542cd2d519c
MD5 e8699d4095592d2f9d6a4e8658890815
BLAKE2b-256 59a8e753a01935568624f4922649312b6778de91540d8b0887a0ce19a5901fe1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d55f8d171503c6b375c07ac95a33a2fa70c6e041c45fc59130e2688313f163d0
MD5 3fea0bbf8a6bece13085a9a3d18c9dd0
BLAKE2b-256 21d64f66b2725bc2c161614ea5e222f130e21e71fca557d4b62912249afb541c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2b8b19eb8543c3ce6e901da7a7cfbfc3fbaf3c5e056022dd42d85e0a0bb507c6
MD5 66ec2bc66f5c204eeaab738bb0bc3303
BLAKE2b-256 52350fdfe40996dd3b513294b7dd945c53ddeb5162b3b3dd8b0f31278b9d5a70

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 54f9a28c74981238eb3f52ca87b485a00fbd67f2dcf986a2b41cd7e0872edf38
MD5 0a150a9df50f8195fca1d1fb9f8885ad
BLAKE2b-256 5829c762dbc493ded2625f8465306e9622e06c14f3f9e38d718194363198a86c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 29de128801505cb79d550847e296d49cc05f317df5072a4ca57f8947e084ec51
MD5 2b1f36e04f05f903d8f842b022e7e8db
BLAKE2b-256 e86b7fb5b6c9a456b5f9e7e78a1a1dd0d87b891b3d89dcd022946c582d215914

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210518011521-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bb1a64e3deb87f0cf65fc04a2bb027816ab34baac591bf59a276b5e6001a75d7
MD5 11306ea6a03b37b97d61e714207c4b86
BLAKE2b-256 189ba2922d84be60c97ffc1d1f673509e30268d0172452457f6b802c9293c097

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page