Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 42d543cf2ce80eaa9396b0f285a82ce41af0733cbfe242af27b9ae657eed8a47
MD5 6e5db85c75fb4196c5effa9cbc5757cd
BLAKE2b-256 da3b9d702c473cea0dc12539fbeab9159d34a67ad12c1aa6017c8daf2a6d9540

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e4059b7acd62fdb342aba64fdf37f04976c3deb3d92e2247fbe3801ef77123ae
MD5 11c9bdc4288cc1d36f2b2d9b1cbcee19
BLAKE2b-256 bb57c47f08365d12613c7ab0ed8fab1774e85f30abdd7b7eb57c1b668620e40a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dfe134939097bc7d3c362e6ecf79d95f6287e217ce6a341e0974b4f5f042a26a
MD5 ae32fb1b3d400ceca9765a466b9da63a
BLAKE2b-256 f90576e02d536cf17e2aa85ec4b00cbc2e3c790749be7fff10a0b3acdaf5354d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e542ecce162bee263d4f677c00c9036d28cf3fa99058e31556320f12a76469be
MD5 7e12aaf09aca555958afbfe4bbbc672f
BLAKE2b-256 44aae766e9549263fc2e774293f02313bb0b528469e5a0baf6e28589b2b6df4b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3a6e62cc22837aeeda59021daff587aaaff4e68628855791bf1b56d08f26ee46
MD5 b1c983df9d64d42fd1c40adb370d9b7c
BLAKE2b-256 4c7c4c92d5446df0909bf0283070075bdc4b0dc6d611a68b98360d8d904f31e1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 604751e51c672136aaddad3b295e3164b1ee8643581a06c2e3fdacaca88c6799
MD5 4de9c63deb82824c72b9ef9167c71353
BLAKE2b-256 c681383c961850aaf607d89b658757e5fdd7b93ffe9394623cab5a868a9d2097

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 550ef9975be7d77ae87cacb461502c50a0a7831101688ad0ef078631bc9454b2
MD5 26afe472d476bb860891184c8de8e48d
BLAKE2b-256 bd6b4c1d5c05661f41ba59fc4fd14f1e1168be1b1a8d94bbd9569a5477140d9b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1673e180440fe055005e9623cff21d1113db5de0b3b52c02f6b01c320bbde5ac
MD5 46c6a891008c2c0a1332208f2bf6a566
BLAKE2b-256 04342fdcf3acc031ee0bb3ce0453c11439826ff540941c009ff7d986ed405ad4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e3f945f93bab287c630856d551917a2e041eceb658d7c91f86b6ba112757c148
MD5 bcc612a646324dae3dccd2333bf32faa
BLAKE2b-256 f7006d29fabe6ad58e1b974efdb98eb7194c92c022b7e9a3f9bd21b4372b5ce0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 de47d4d7f2d8804d8d6e0e51a5301ec0326b620c801e35f51817b5635760f6aa
MD5 74e0c190567290fab5d8cc96d57496df
BLAKE2b-256 ca1248bdbb1db42f7baf1e0b05532fcaba9222f8fea1b3fdfcaa9a627da54bcd

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 efe1cd6ffd743c7ed98bb613ce12c4ca05d958a78c5b36de66177bcaac8cd248
MD5 fbb2581b43ad4704d5791110ad392a80
BLAKE2b-256 181df80fed88d04804a4da292d78e52c1f0ae109e31a8260d82f09ad0011b9ac

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210609134947-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 504225063bcdf25001b16e4d6d1514d346177779f565b40afdf18a179b00d001
MD5 ccafa011251f5f8748add05edd8f792e
BLAKE2b-256 0dad5e4ba8b69f5670aacd760ac3f2c8bea9ccd6a9a5e46b4acd41c4fce0a69c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page