Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 017caef1f0bca7bd1db248df2c1b4006be388ebf8284bb4f8e25a27705daecd0
MD5 2d69c6e56ad5718dba4f90bb12f23d21
BLAKE2b-256 42f01045f4161f5f11a84650aed3e98c6a42010712fe7ff81ba1fc9ec15517b1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a259c466c112bfaad738164a7d6c2644d8de3ecf6f6e1a3cfd088facb536af02
MD5 e05aca900fa1291ae41ef32dfd6795a2
BLAKE2b-256 4808d16e0d7e608b3b90d7e6da6bfb6abd9704a8c2b2e0c3b9eee7f36ed3f3d2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dffc6ee86e0557ed635596f0f56b96d618359cc8c89ab8ba7d734d22375bbe81
MD5 77eacd8b223b4474e24a4c7b181f774e
BLAKE2b-256 2d34dd12ad602c7849c006f2596bfa327761d7d8922c5e5660ff0fb70e75927a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3a834a48a6c47a23d6d4ddae3e7b7b688a23b63eaec20c6485addced0ca81f84
MD5 009c4ae673e5cc93b8c3c5a3edfb00f0
BLAKE2b-256 f54ce8f935c3d08990d6a463dceb9903ea935e197a228c7661c4c1b0ae3e3a92

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3c6b895e58a0d109b0c734f2e6c5a98a3717a3f0886160d7d1dda295e78fec80
MD5 0b24887624ad516f5d95a556ee79859b
BLAKE2b-256 67d103147b4683530244707bd7b9cba7eb90c476d124c3adbfebbbc4e4db1441

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6411a89e0af638c92788b9bb29a462cf4de307ddc598b6cd27297982ad0147fa
MD5 36487a3f10bb2524a6c239c2c3bcd044
BLAKE2b-256 49217c5bfc4484f7b1f7e46cc6382593fa48f3368353e891b41e3e869f63d9d8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e93b70f011ea7e73c391faf504039ef517511bd2b7ea34a45d20e81dee543f8a
MD5 867e17cafff8304dc45466b0cf59e3d8
BLAKE2b-256 9c4d5e4702d3f66433f3469476bcbcd682e50d01edce713b23d6066169e9549c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 957661d69105bd2ada8128e81c78637331d3c416588c80c759360db21b857d98
MD5 fbb39ecae2d68d8a25c721adf1ee6b38
BLAKE2b-256 9e480c78e0f0c073d3f7cbf6a6b8a09e4b90c7bdf34a334897f8672d5c051b44

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 097d575a3564342505bcd4340d3612cc396a20f0d2364ac3f3f55a5996b28012
MD5 da161c0c32e7c0bb26493486c94bc47a
BLAKE2b-256 29bef67108ef719ee060bfaab2e13b8fa0907fe6821412b532ac55056f4eb06a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ef072c38e496cfbad123eed63a864c2ee9498046f59043a6211670b7d370e8e9
MD5 61d8680f4c82e24adcce005cbe3bb8ce
BLAKE2b-256 6ffb8497d5d2933b4be060790dfe6ac43e754a09f7da07c0e00620847fe38203

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 241681b97248a220a476b40ebf7caec13008ec976ed79a11dae73604b595298d
MD5 59cf0153d40d63f88c688e1af716b8d0
BLAKE2b-256 5306c3b057fd7590b39e04199690e70ff931750930fa7fc73e6130e6e0666e10

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210612130343-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5184d667030b6d43ef9ebe05e6cd2bacbcd51f9fb70292e1e600e50c079eb56a
MD5 8f93d050b55e264f0e93c2befd214979
BLAKE2b-256 918ec4b013b46a11c093f125520eab89a705fedc27b8d50eb6977a13a801a717

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page