Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 88b0b0bd057fd22ecd8ba2ab2b026afb16d4d9299888705ed942e855ed2a210b
MD5 47dbc5da744e4a50f6e948e5dcc5ba69
BLAKE2b-256 054b5fd7f46eedc23b7e6af39052a0fe77701104f904a840045a8b0fa38f2795

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 846c3f76e0844b04cc7ebb48af3114a94b2c4a756d95fa795efd5eb138d900fe
MD5 6bc5adbf8e2c78cec234647f827d1867
BLAKE2b-256 7787c199ad83d6760c9a9a42f845323910edfb887ba4860a75fd5cde0382bf51

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1f85f8447bbbbed553b1556d86b2efe82473ce333c54b9dfd403c4950dea0d66
MD5 f44ffecaa11c04e8680cc9b3ea24157b
BLAKE2b-256 c89b012b1f05c7c243d9852bec42ba8f0cd65f4a97ec82bd731d38c29227b0ce

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fe20fbbe17fc8c0bbf845a16663d269bf74a8effd26dc61003e529f0177b4bd9
MD5 711a64d6c2219850bf99e1a605d84943
BLAKE2b-256 2a79524454442bb214d0d4d41feb3976287354e677f9fc55183d8bb442b05428

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 141c9a58dfdbbdc308233ed4c5449f6967cfdcdff8fde89d1b53e4c1a750cbb4
MD5 7dcc491f8d08c0e51c2fde3b0f0d6335
BLAKE2b-256 4c66559994a00d73b9873454524bfbd6db89c025ab5d58ea583981bddc7d1228

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 91577ef844332590b801c63f3200ae5f66e16827037de2b8a0c86a4a4e4a4d3d
MD5 38897909ab2a374853acd3f38b6663e2
BLAKE2b-256 212e4fd11c7c47d124cb8b92a111c5bac6876ad91344bb88c58a2305d8719639

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 faf914ad79f74e152a36c4c93dc384c658d67718f90b38ead15b192e26ecdafe
MD5 b24af0b821da427e3e887031bee9b5d7
BLAKE2b-256 7032086bee30e7019c5ffab306996fd27eab9a9e8f2333ce37c83c0b2afcacfe

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2c75c9d41f30f7bd47cd92cb081a38ca6dc5262d72d7ef0e01cdee09ae258456
MD5 ba7b3f96607d2b582a1dfdfb604197ab
BLAKE2b-256 4105914e9ceca4cb967c6c2d423ccfbc034e02f77ecd96498c08b47775e1bf76

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a0c69263c302049181872a87c40056275d7824b271629532f26b8f7bc78a6d6e
MD5 2e3b631775edacb5e7e001629e452e83
BLAKE2b-256 acd859e3e67a77b71cfce48b23ae9748bcd25b7f031381ad30c2bb63c4a9c9cc

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f5d5824f5d527720f01f7588e4107dc4b6edf9bef95aa2cccbd885a735d76d35
MD5 a207c1b1c53ecfc7524148c9aa4ad2f8
BLAKE2b-256 2b5711011e172f46c5a59de2141a3a7d680828c27520588ac97f71cb0701e1f0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1213d1637e81b924dd3f851d9878e6bf314752f81eac381c9b21afd78737456d
MD5 d99819201d22154ef61e8b20ff459c30
BLAKE2b-256 2c892815c85acdbd5900ab62d825f0d0fe5d79eb089addfc75958e00210df400

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.18.0.dev20210619183659-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fff328408fcf20df341c9a4af9e88bea33bf977aa9fee5c5e6398166cbbb96b6
MD5 f4856c867e35a00f0c91b9c84a22a5ea
BLAKE2b-256 9286a7bfa07900bb5c801ec5d3c84fbaaec93cfe5badbbd2aaba18bed21e75ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page