Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 70476dc05155804a143a4cca82fa1a2aecbb45b40a2be9d7c418c28a1b6e0e46
MD5 873b3effb728e77b6b1f15c24353033c
BLAKE2b-256 cbd90def9701f8f592917ad55110781e6e58b79c7e34671d2172652027ee7eef

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e300a9bedf86fc43bd7aadfbeea0fd3ba1bf3a16fcdf6f4fbd966b4d4f53b0ad
MD5 0d2e8980ab112e7c70031593773439a8
BLAKE2b-256 7bf197afc4331dce69b649b586c8d782dc7372c77c4db13232f76e99b586805d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d5456389c2ef785f30d7a716c9e8ee3aaa4ab91074f972ace38a8ad53edbbeba
MD5 541b8439a8264b2d64320911d443bd2f
BLAKE2b-256 cace4c70ed8477a31baed1d5bef93aab2ec3515f03e2c3d2df9df57b06b909a7

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a6129dbfb17f453ee5c8869ffdcfc98485fd7f2862d452d831711dd1d88fa28b
MD5 03ddf3ee98bbcb4ad895dac747db9cbd
BLAKE2b-256 eda4736505b94ac58a6211ddd92680e31401296e92cfe319c67c17183539438c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 87003de80eeed00cf7699859f66e649e754b4d3d03846bd3ffd318165051158b
MD5 241de0e54c6deeccb587ef2d61e61ac0
BLAKE2b-256 fe8dc10daf3517bfa3a72ebb32e4cbc60a25735a91ca676c45f44212e5e1f318

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 07655af6896eeb5ff785e6c3c18574c6ba63b7da32443e035140b8f089c3073e
MD5 f24474a47e8a94903b965fb9ff277ac3
BLAKE2b-256 720dbb9b66a1627e9242ca7790226bfca61aa583588f6ba5c3858163d10d7e59

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ddbcb227c4cf5346f42f4980dd84b4872a1e00ae335cc2e7c1e222878718225c
MD5 e446352d9050d9fd175634762f6d72e7
BLAKE2b-256 31c97b507f29eda0867884456775ba1d8ee3366b3a96c557c0f9fe04a7ac9930

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f45794f16648866b4c58e5f526c1c29a085c86e95bf515906d97f82c7bc21984
MD5 4f312e5a4a1094c427592122bf1ccf89
BLAKE2b-256 a4f631471cc58e9240430e088d1f7af39b514f751c6a0d655209c4c49a1c681a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3e22a499027c19d8b79b714810df681ffc0e3e4ca51e035900900fccb6381d9e
MD5 6519d030c55dec305bed1d9155d3d867
BLAKE2b-256 c827783cb4cc5b40249d9c4b13c6f3628c50eb1ea1be8381261e3914586f3589

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7055c51ce0ad898cc4ee74e6f2ac19b89ba00950451582b2d429ec2357f89030
MD5 b5b8533f5ce26172d0c239f3e4ee10e9
BLAKE2b-256 46e8a6457455c872c33274738b368f6a12f80c0d47dd8b075d32d969b1013c1a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 30a6a3e98f7af2086a23e916e2b5e5511e20d4deea48db232382090e6f19cb49
MD5 47b741c3274ec28ba421dbf1369923f5
BLAKE2b-256 04b5132ebed6de92ffac2a35cff9703d40faff795fb91dd47bf5bb18887b1265

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210629125906-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 550ed5e09d2c69a20356b831172bc8cff92382885db2252472c2c04265812a8a
MD5 83b04e0c41966c00b1988a71acfa7439
BLAKE2b-256 1b1bdbdb8d9e614506214c548f9e92313ae569c9509ada5b3fef6c780fc1ede4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page