Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9ef9fab392346355f3de2eda1bd0ef11175e9beaadf5e869f7a0fe9f4b993d30
MD5 6aa9f34ca32c7f58ba38cd1644b9da92
BLAKE2b-256 f19efb3c8b1cd51874a5db0263a53efad43ca34b8b8ae332a03580fe14f19af5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dc67b72d8f2c0808cedc9e85a3b71bca9550839f6f7871a28dd10bcee3eb1ce7
MD5 81b2081c3bb1587e245780ca5dd4b6f0
BLAKE2b-256 8f611f5c6677f4cb1405b7019e6552b2917257ace04537718edba797b493a88f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8ee6088d332870d27be50a193f615ba511c10c668dc12f7510a9c426062bfda4
MD5 8e1821e2b7ca5287e2f383d779dfcf0f
BLAKE2b-256 7da3f13508d3778478b146a035a7793a8f902d8d2fb3815d4abf4a005039e326

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c6b9903502168572a19ee8e17e784142b24df894e802d522a83dcb15d579a256
MD5 cecf0b9672707d67184e7861fb3230bd
BLAKE2b-256 70fb0840e4d5885e163612e5af020de85cf300e6d750011b5b03993444acf44a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 609d5ee2f700f8d3c87b8d49d78bc026aafbf02d0eb84eeb3a4fdb9337c022d9
MD5 343aa25b458936c65e4b6acd14a3c19a
BLAKE2b-256 03071637c97a4cf0efaca1a7eaf2683ecf5853070d715d982ab0a16392472a54

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5e3cd62efa1de7238e69ca837a1d3683e0a112556e82d5cf03e2131da79d2d1b
MD5 07e6698340bd8dbf819d181cdfe47e89
BLAKE2b-256 640a3494fa42db43fc486ffd20f854dd658d173dbb4293beb33448d076e73751

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1789fa6a04f0ce3272eddb684bb60b36c8ec7cfa9a6f9a98f282d5d40a20c39d
MD5 ace9f07c38368dfa056fcbee0f92f812
BLAKE2b-256 d98e3df182b51888be22e4a67d216b471f08d1374445f406f104a2ea2c1730d8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a90368934b3b204ae054d7b1c7fab2776e16771859113b754ec13d63dec0fe86
MD5 9a77fbf766d31a33e6087be8e3c0ee61
BLAKE2b-256 3bc1c557a1fe28c757185ee9bd86fa0303a412e4110a5446f1d6b36d6d839341

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c581e962a228e3b8f6dd887aa15649e79447434879e7fd99e84d783b7e1ae6e0
MD5 5e651a8287cbfa3a96fd8f7cca9862f2
BLAKE2b-256 822d798154cac74564f93a3c99218c6ca8f137781e99856f28daa1218671a236

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3c19bfa4f758a432e5f03f36515599f577dbc25434ebf18fa872eb3a36b571e7
MD5 f869c51121aa3b54571d53370a4766a4
BLAKE2b-256 5effeb93182f79009c5280b54f35e234d5466a10835081a109af5ee697352a44

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1ff3add5b9665b1040e45f00d82da4b2fa27224fadc2c5cf6e79a62986736baa
MD5 fd7f058db010397b2fb2b4271b7f1345
BLAKE2b-256 8af7cec24e75cdbbd0c78b7281a1e878bd2e8588594db83d3005e23378ea739a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.0.dev20210630021123-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 639ab313e5e8cda5231a078a8d45975e19b44445f5a0788f477495a27516ecc4
MD5 eb9b7915041329efa62b75e637a8d51c
BLAKE2b-256 3cdf4412c3acdbce5975b9606a760c93d6199af92582b3dae4ad44d9fb126097

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page