Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b22931ffd7598ca6cf87a9a87d1bc0ae13a6f057c9e3189488e4588a77279bff
MD5 a698fe0cdeea5e4623258a4bee883cba
BLAKE2b-256 37f4a811f3a3ee70a85e96ab5ed342b3cb3b813c2cf98cb2ffd78b85fc1ddaa4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a2f65479c7b658b40a02d9dfaecbc4d2097173a5ffe38aa1a53044a2ae043527
MD5 97f9d8b5f30ed2428519430143812fbb
BLAKE2b-256 98ab02e22f7d68695368fb32f99861b61e28ea3b772153e26feba3a4771aab14

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 928e2173606f63565412806ee9915aa74fc2d43679ac529bfd786ad8f0f61b3b
MD5 fc45364871350f747aa159d4cdd77a98
BLAKE2b-256 98e64df07fd9b5f4b9de197155a2ea56ba9b40293fb9eed8e4cae3e616f18648

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9d4334db9b95243a8b78a13d798c28966338b6022739a8718728c22163e1cd8f
MD5 b4d8646f68d5c5b9e278b62326e745fa
BLAKE2b-256 ccdc5c060430f3850410454f248656ce647e4e579470a7420017e4e4b9a43390

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0246129906b14bf878ebeae2d1c681ffea0a69c9d625be5443ac4bf37e70fc78
MD5 bdae9b9987eed38ff3d0a1b56015ddd2
BLAKE2b-256 b1667fedfb66ba2862dddf840e5fddfbb04eea2db94f2a41f5688767212b98b8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 221190d4157e80eb0bff0cce966d7f1b282b5f3ec69660d008a59641f2ad6f44
MD5 328b0565371e4f6cdaf6f056516001a7
BLAKE2b-256 fc762b65c168fd979a3c34800f72ed2f809dbf83fd0e7e01f42bcd94059ba519

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bb5eb7958843837671e40e4896858cb31f7be2a06591264ef1d32e672fcc7768
MD5 fc4f5fea556ddd286086ac084fc9652e
BLAKE2b-256 5bbb50f58b00074af12b1afcc8e950f987e6676f5b7b8dd07df0f2367bfd970d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fa8683d51e43a09f2928156c9c43ea843d86a19dc34dc06a7c2ac718c6d9554a
MD5 bb1c278f6def5537c62e179bd54c9bd1
BLAKE2b-256 dd1ea8a13ba43e9985fedeb2904031e68258a306727a8a7a4e0b91ceac9dba82

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6ac3ce62719225631701d0e51b2c0f8e4085dd20f9e3fefa6437f649a01c403f
MD5 cfdd29732b37d46404f3ba785bb576cc
BLAKE2b-256 4bc7f0ea8d9aa54dd236efb8726633f8d722dcc2edc5a61d85ebca7d0cb8ea20

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9bb54f5834a1a0027cc18d146efee68a5edbb504bc248bfe2396e2db56978ccb
MD5 c4cfcde180baa5c853cd978839f30647
BLAKE2b-256 1397806b2681d8c1c4bfaccce51cce044099eb3a1a5c110ad6f36f6b853c7619

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fb8611216fb38ebed636a7d1dc784bf96f5ddf79fffafad1e65e32242537ca9a
MD5 604789d88bb29ce994ffea014ac4ae88
BLAKE2b-256 7cee279ad476ea770bfe8d30b618e2314994d4aab836a5d87f4e857dff778cd9

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.19.1.dev20210724130328-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0598ad45325a22f7c1bca360939aa5e5637e65f30acb254ee212dfae3de8ca73
MD5 1cbf2dff1785aada7022abb666ff0e6b
BLAKE2b-256 9f30acf2332607f7df4b717701bc7aae4816f67cc51da7654043f2b5ef4287fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page