Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6bf3cfb3e3905a0011c7398a72fb6cd2bf43a1763b5b5d457084a92e3e0b6c9f
MD5 9a2cc7f06e4c5d6652c2ebf84b4c5cda
BLAKE2b-256 0bddd20e886573beed514a6b525418770c837dc7324b9471a84a7f4789ef46a3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6a4e7d92d34955df9c6f535d7a6712c9d4cfec2c2c897365321e13591f78edfe
MD5 aeea86c94e0484c8a088dd85cf22f402
BLAKE2b-256 8a5225b1e33d2294565a57b92ba72aa6a0d85648ecd87f1bc41a8857446bc569

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 83e825bff2e5ce63c05546efe32d7166d66a5f7c4af602997fc6e33378cb116d
MD5 15993f5e21cb2a8d0e1b5df82c70508a
BLAKE2b-256 a6553531d3c707ece806b6179a3245d8ae47135bcba565ddec4498bc89ec3398

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cc9e031f05c7701280e7d5f208d13fad374c261940df0a850776763c1bfa3ee7
MD5 a8ed6a7eb2514ae759a5cdf5fffd0b50
BLAKE2b-256 72a97a1b24d89d2316cc01f3a5dd34e4d002ef52ec3d04e282180e8eb3f793b3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 08a2ecc050d6631d21c71b927b7d074076b427d3aad2c4c78dd458a1e8308976
MD5 2e74b6972d672506398befa415bbba05
BLAKE2b-256 4f34d9daa3c0e4885613a3ed802f76f25a76d12a8e349088ce1d176abf4c8a0f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 64895e1e8e6c23740e0667659aa0bd12c02a423cb6d75c708bbede5e37130f96
MD5 1d447c476bd07f00d9a080c715652b2f
BLAKE2b-256 4fb4a1ee3f29023df32f104e0a167c89b4ba4d10368f418850ac6b42424602b4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a924a2706f0f02be8ea0e15017fa33c5e88f3d925aa44cb65dbc7a63d8292c40
MD5 885d0505485d754fbaa2baec862db37c
BLAKE2b-256 72917190c681093f9c9840e03e92ea93bb84d8af4cc5ff200aabfd9f9fbc55e1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8e25263b7dab93299b4ffbc474dd56f00736e052215f0592608bf850067a794b
MD5 09faffe64ad65860a0a35884f69424d0
BLAKE2b-256 fc6ff9ba145a9cf9781df00dbb66697b48a8d369c84da8f17c395fbd2fd9de76

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 853dee773211b2472bee25c2b363adb6a1a00e4f895aaf2ed36bb5083c82b77c
MD5 401b03a2f7c6ddae526b6996438b85a2
BLAKE2b-256 84da817a177790682ddce7e679a58bb508134209fe44c11669f2157b6a19bfef

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a640e1c37a791946e258fb25bbfd347ec13b31e8bab8fc57bc80c016d6b85442
MD5 a11982d7de928f636cd32622795acf63
BLAKE2b-256 7226f3b90b08171ad38eeff7a67f4f3705e787541de175ce85e98ee61498008a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ed44bb6bfd273f6783ac764e03bcc7bca2a2418dc92dace85b2bc1380ba7986d
MD5 17ddec5775f493bb7ece8b11c6c6caa1
BLAKE2b-256 1e648aee1e3e8dd3e6339e08567b34e11cde54ff60075e3c104b4acc1259af9a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210725141334-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f1944cae4cd58075015f063427bf3b399bc3613956c2f84be8f4bfa63f2ae8e8
MD5 014221b3c0ee5cf2f9dcb3cbbe5b27b2
BLAKE2b-256 e3751500ee319bebdb8f1a1ada47c1bd429e4da816ec783635047137c6b32f6d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page