Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ab26db7c1bbe9a7b54b0b4fe0d0ca4137ad92533f4e46df7676329ad91476977
MD5 d868c54e288a3a9ee923280d0b556b87
BLAKE2b-256 0302a00173b788de465d0ab1bcec8feb71e2ef7f7abdcb30ec9f820c592640ad

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 60192f9aa7a2342b61038402c2320918ff4e3b82c2d4996acf385689f2181e7d
MD5 0a195cb22fbc631737fb1af3d22f5473
BLAKE2b-256 d778e03b728c5c993b3fc34e6e9ad7b40fcfbe647d07e0c4536afb036ee9cd6f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 154507d569ce2476877b17c0b0dc460f0591f9b8fc4eb18f4f3cf4ec1650105f
MD5 cdbe132a1a28861ba471e12ad94040e2
BLAKE2b-256 60d255df0ca650ccf5b3669ed56f48b3855f30175d0a69d2811d86fb11eb7551

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5073738a729a7cb756a32b43ec78fa57ed6f54ee7aca30a9556b57fcca7f0d79
MD5 f2967af85fabcfb4d2fb577abda9b635
BLAKE2b-256 9b42d6f4b2158d94be5f94acaaab78fdf62bac77f16771d269387c42a0fd9129

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 11f40335cff599fd1727e5578c2de1f64aede0296a90266b06e88dffa0e075a4
MD5 a8766adc36d74706cf2a7b80f4899d79
BLAKE2b-256 7bb1af30bbcdd92c431316bde5eb3f15af1f59facd877a2c3488f2d99d71646a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ac75b9cd4ff954e4cd41c83c081ae1734d3c75b27b0156425ebf2ba47feb957f
MD5 a5c69994cfeaa38988e91043a2a7fbf4
BLAKE2b-256 85d67a2367287e85d99798eea58f39b664ac6b3dda529147bedaba58cdeb63e6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cea5bcaf94e7c03d42b3461603d0a1c28b307e6c54198dd319cd04ebfaeb879e
MD5 ef523abbf9bc72ed2bba6a6f65345513
BLAKE2b-256 831a2b47ce0159efdca21535d1b8775679f6845c2f72d0e40ace92985cf4d3e4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 399580afdf9713701f94213ce4c5805fdd38d80ccee08221af4a0af3d6f166b7
MD5 67ca65914871f2c018f8320e2fb8dbeb
BLAKE2b-256 dd980d3a8e6878d549c053f01e585947cb527eb808d5bcdbe67e26b95899d1d3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3ee1509456d8cda1d4c997a3719e6d89024aeb637ad62bb137e4f04448cb7f8b
MD5 d6afc0d1f253288fd0cc4ca01f0ec186
BLAKE2b-256 5e98ce1005ec0f34e944d5b4a8929a96d2619ecb7013280894d3dd8c708648a4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4ce77d253f10385e3626fb98db1ff8b1eacc1781a07f8d634f4d385a3a60dd27
MD5 25d0faef98257285d72e65d3a36a4366
BLAKE2b-256 57a760817dda7e082cd739f8ad89d1e88e2ec904617f866baf246e76ccc22e31

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7d9ed1de12272303bd04868b13e61556d4da18e25658d71426301454e7f2e525
MD5 70421d7b7cf090fef6b7a9aaeac7277e
BLAKE2b-256 6ba3f4d31b167e727894d1aad858893151f2690273b0dba994b3878b470317c2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210825225307-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 78cfd0a8a8bd1e46d165b06e968ee00a9b8b5e39bfb128517ba6e16ac8ca4bb1
MD5 fc2b0d0ab11f1a55f7f49502085cac16
BLAKE2b-256 8a0346aabc879dcc34b86220d6b0a108d20f842551c635b38f85845852803743

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page