Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 92a91abbd21b9a183186ec7ceb4b8a8b2338058fd90c37f907e1ba016aa50f06
MD5 0d3290455b073db755d012649970930e
BLAKE2b-256 922802213b108b596fd7645488029c95a02e33b4ba4d9ba8ade94f3669b629f6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9b9fc6def1906c8d8fa3fa0c875ba66776c8d8382f220b4fe825ae34c7deff57
MD5 3478cd864437944abdf02ff614677387
BLAKE2b-256 4de5e8135f819b5664729ec8e59225ef93257843eb7bfc84675e8a2ed563f1b1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f59e4b3c0e43155ceb5dce45c58a3c502df58221d063f0061ebe60f20b5fcf10
MD5 86c89f567feef27cdfccbdb9cf8e20d3
BLAKE2b-256 7b2ace87516e331b996599d464770fa074407cddc4770fc6ea068eb72e9b684c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 07ebb9f7d6ee24d5fb4b1a83d03cb9e41952d2a9e6f8e04d587fbfc581567894
MD5 c059aef51940ed23385ec4fba9660abf
BLAKE2b-256 5cf9808526253c0b84162e3a8adb01ee83843773ac2bcb8768a86c004f51ca53

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b24affc13bf5b122e3fb190cb8f8aa68e5aeca53d2bb248b218db27562a58f00
MD5 033e271e2bd7c928621efd65cb679f2f
BLAKE2b-256 5154fcb7b88baaf7fff5c846fc635016d41bb8bc145e81598863933e30827e9e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e79bb82316626d3fc46594d827bc680343f14c58f9e627f326c5cf0df998252d
MD5 2ed6d3a5477ddf82755dc66cc4e90a5c
BLAKE2b-256 ee3e5ac9eedb9282dc2dfafd0baa34a6d7ce2f22cb07ab86215e8d161f9ebd56

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 47b6caa61cc50b367f9e2cb2caac73bf53db5fa7fab03d3e20c028979ccc9ca6
MD5 4ab72ec84c3866cfa713230105d8c38b
BLAKE2b-256 0c188949ec4417b5a7f5f86f6cad7e36bb4ebf6c919405c1c59c5f5abce456ed

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 afb8d84683fcd85f87eddd1486f0fba7d0d40659433a14f70a909a1785f168b0
MD5 089ac1ab55d9779895347668297cb7c9
BLAKE2b-256 34c1cc4cbd942359ba5a6098b1aabf097c3122ec1b0d7870bf06c8a4bed28b73

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4f515ce44e2b42ee3933d865c4ec3680838aa17d430f78f2ef2f8ddb90b2388f
MD5 1616136fff4ccdd7c6857218201710df
BLAKE2b-256 591adf9b31f145eea488245a47667de35dcf1c099cbf47e44a48335d81b44fbf

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 093c0aa9b2cd79e574711094eb702d9a5cec66e599896bea0fe105f7bf197c4a
MD5 7c425dca9e885f9ff00da375ae052746
BLAKE2b-256 e8a754f000c348998a4c31eb4f343c1329f053f013248b2afb575fc6238ab388

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ba3a7bd299787de747193482d821c8c6f2f87f297dc407c61a6159199beef220
MD5 608e2b33cd1705e359b37237e0626894
BLAKE2b-256 5cae1a6401d43c764a6368a7263eed85377e2deb4f849e7162362bba7d13b024

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210826002402-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 91a3192edf8d6d8103cc6a1fc7180a47324b1b701c33f6ea0b977ba78bd7b601
MD5 a91d3f3de0a526a3600dbe7c3fc15878
BLAKE2b-256 799f9c9bcc53068e091735b5aab83354fcc7a1626ea17952cb7dfec4ab344b82

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page