Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ab465678c93567c50ee1ec6cf509759f60f83c239b0318a0e630e8ff1fe777ce
MD5 26e4f6593b586270af90ab6327223c23
BLAKE2b-256 a0850ec187a8e596f1197d2f82fd8f67dcbb6890d7fd41f23ad51872e9543f0d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 29f3b840006319b93bf18ac5e1f717896e18513571311faa7932d6357dddf1aa
MD5 c830c1bb6bbc7e89be081a91e4f0ebda
BLAKE2b-256 acb2429415818b3f7b5e2c32a86f6f7172d1187a39c2bd446c2f54af9fa7548e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4c6adef67f67a82ebcbb7079f14af5b390ca4b2f45f37b250f9aa243ec095ee1
MD5 0b264b557534a2ba4671f04bc4509942
BLAKE2b-256 fb977e42de627d4af751137410fe9459015a27ca1891b97abb7e34f681d1083c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e8f902826c9cef409f7df3e50d6bccdc90af3446706e49a500115a23fddb2846
MD5 a2c9b16f76a679a73d24f661b6c95714
BLAKE2b-256 64a4568a939413b87fd10caab9f9a25af559ec062a7882790bff3a15038b96b4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 43a76e8c29bc0488b5c922526146548e723a1d87099b7983a86bf75378981581
MD5 f1fc79fa030859e2605a5ca15987268e
BLAKE2b-256 082d1530c5c4ed989b2c2f4e1c91c1eb6a7535313b6799858336686fa11941c0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 919fcfd36678a15e4b0a3e41be2d74b6db3e5c3483e095c13aaeafcab0d51100
MD5 0444cd0c4c2cea8788a606717133ca08
BLAKE2b-256 52f29ee93515ec1ac8953849bb8fb11720cd881ed8c4fc81a4342ec874d21c9c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a26ac2ba311f80b781365b6489ece5112e3a3638de79c5b7efb00fbad796ee8f
MD5 c7a41a1b2ffefbed052495e27bda9b5a
BLAKE2b-256 a9e5c029aa2aafd12d420a914e817c20b7f762b35e5a0f527ebcd541136db606

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7b368b7ae8eb250752d34678ad22385e9c1bf6103bbad3483f7f5ff5d70d6418
MD5 d91b87e3ca5335c34ad6e7cff7636e33
BLAKE2b-256 b80baf41390c060ce294bfde8f6896beb97398eae4f8b3fadc8853e2a745e331

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0bf69164c0067dd121ae88d79dff0b835e80edd479183460900fc32ea9f22502
MD5 28b727e8e3358eb82430fb4be20f74b5
BLAKE2b-256 cbb6ce3ea9645733c7d14be7c4cf0475247107c1a24f5b798beb58b25b39ebbe

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 cd0b7e5e463f60151e161f88415c8a0b557971ae7d83724b87939c8edfa1607d
MD5 925391aaac6aacf8d38616969231b984
BLAKE2b-256 364fd8ab6aa7e2ad066e356c8b7e38b91e3c064c54f855a987d8a85eb4ee81e6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8f494bc80d4d1134ed829226dfb16941fde79f4b3b96bc42aa91e45cb37597ea
MD5 98a3416b2d6ef64a71079d98a1dd16d3
BLAKE2b-256 d055173c2a5895673546a31b2bccc3970927f9b7be12b1fa5df3f09f1fc9abb9

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210903172215-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8be0180883781097c6a5449255c725937f7f284f236b0fcaea0454267ab3f6f2
MD5 f7c6d79e42e4f007351bea3edbf0331f
BLAKE2b-256 7356020275258ffd84e857e39d0c91330993d62e9eda3d4ed0db3d4635e18b23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page