Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 58fe6cb4101b9273c897ed0864cb444b0218af6fa22cea60319929a6eeb57cd8
MD5 80f6a1425fbd6a407f0f8959a7b91323
BLAKE2b-256 948c108b3e87a46e0bd7fcd892d846530df22c09d805b4e92fbce5a5e8fca76d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f6f3ccb6ef95446240ce09d307c7e6cac8a3b5efe2ab73cd020f71c803d76eb7
MD5 ba3fdfbeef89f8a1b0b65c9a22839d60
BLAKE2b-256 6993e02c811a5ce1f0cc3d8978edabcca37be9edd9dcbd358e92c0c613c5da72

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e83b5ea1829219dbec2315df6136477b5774b52c03e17f881ec32b9674a5bffe
MD5 44a9ba4712c2a99d9164213fb48cadce
BLAKE2b-256 b51c8bad80620e85dfcc804629fc354a01619a8515b41c74911c3460638d8159

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 37a270a91413ea94a2835515c381a23eb4d54c6b2feec57ab30cf3228d815d60
MD5 d31cbd4d37c8b8d6d2e6d97f731183cf
BLAKE2b-256 3a29a6810614f582bb8c6eb23817849d5b35fbb7006d7d982f725e9dfea1d07e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 491c595557aa62f7fc1291a858bbd53c5eb96c5a433e54f316c51aac786a7415
MD5 4243ee892d9c57dc6bb422cd4593a4b0
BLAKE2b-256 8a533425389da56c8a0b7666c46872147a95155823bec6c8e76ab8c48aed6570

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 99386ea2433c265d1f58d5a2a82835a53c04747dd39a3f2e9e912f6acf5ebef3
MD5 7fa095978ad8ef1add841dad98b20d36
BLAKE2b-256 4d466273c121b5e4cdf843ba3cb3165378b91dede1f9817830bc9f022933aad2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8265d5774e12651abc213989e5b4c16e1b281f932ef48cd95b800ceeff162315
MD5 928fb31c0722be2174518350671c70db
BLAKE2b-256 c28686f12bb053be4498865517c6419bc5ed598bb0891d1bc0ea04adbe4ff3e6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 05040180faa6fe8420a5c8acfbd1694361fb2f8160996552ce29a0c886cab7cc
MD5 2f4199667a8d601574201e426c442ce3
BLAKE2b-256 759d3eb0decc5f162ca08b4539b1d0224cd0908f930f8e93124d093b2e4bf433

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a34794102acf70a278d6a5fc273f193b9b3650cf19ac834b77ef75e01102fade
MD5 efd69ea397a4265467abd324153e2a3a
BLAKE2b-256 fb1973217d08e7911a02c7f58943ebdcaa1e87ddf6d88c23fc4a66a262ab2c80

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3aef127ecd26ec8b5eb2d9a4b5b201caebf980ac44587a76f58f5ba89f69604b
MD5 2071ab1a35133b5ebab394a4a6cc46c2
BLAKE2b-256 3155f34ad1304ffd32adff8615131ff99d0123b6b41ebc166a7c3bfc3a4fb0e1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 03fcc5151a6431aa1f98a05c050403a3caa28b3e0c1f56001a230d225cd3a9a2
MD5 66b2055bab0c56ac26b6f15d1474e446
BLAKE2b-256 6a026cf8833db96ba6e0c0a94204f2e7ce7aa5ed2d275abb49dd01a1ed3a13c6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.20.0.dev20210910015824-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 654dacb67db3361f49adbf56deaa92155a60410050f37cb1705f45f53890eb14
MD5 5e6fd0149e03db3c043761a4ad88b040
BLAKE2b-256 4ece79d696b19b907426382c6aaaaea9a545e215af2113a4b5a294f829bf82e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page