Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 00d9ac097b424269616445e349a2ae046bef545a2cff344a695ce414a70ea41e
MD5 dff0e2147a6f370e2a21f889190861c7
BLAKE2b-256 f6bb8a8fd42512ea8e0e20331a2a0df60281b0658fed896903774c8da7952717

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 003fbf4083151fc1c333eb1e4015057c67e381169540e1993113d74879538c5d
MD5 309c16c6403d71886a95510d1d3c9c68
BLAKE2b-256 283eef0476af84750384ad6e281dab2c01e71f0bbee420f0491ab135cd36ee56

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b9d58773b8c5351e01e9ba4423aeba0080ff66a7ad7ce1dd7442d71b06ee74da
MD5 a57adbe8789bb8c97d3bde151015f7e0
BLAKE2b-256 e1c681d743a0e325733acc5ad43b6a91a7d9d28416c7b397575d89c2623b0452

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 866b05c073880f28e36c996b19ad1f8f34d31d55194b412a9014ac48b3f7ca99
MD5 e8327beaa51efab056c4d40fb4c8d615
BLAKE2b-256 83ca8aa3d54edb7201918783c3d8b8851c710f7dcee47234cef0a229b0fb0414

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c3b847e982d8ebc11d900e49e2fc701be8a4e968bb5ba04e8fbe0a5686fc0fdd
MD5 5ba6a883a6adbda6dd2cfe7996ed7b94
BLAKE2b-256 f4a0ad67fc3834591cc24fc05350fc5143c11590d8b82494b8f68d08068072a6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 93e9978065c4ebe9f6c49994ec9225b279145aa17ddc0782d5599e31c937236c
MD5 e7c3d722b9ab6671a1ed44bc631e2693
BLAKE2b-256 3e0c2561f51b506abd80daa58286cf0d97af185dec020791682c24fb044e84bd

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f9a37ec62fc0cf810ba01a369fd8349d92c4292a52a6d611afdd7c97443690fe
MD5 4b6dfd05bd280a69abb38c0244b26474
BLAKE2b-256 772c49f8163a1b16ebaaccdc05e6ed4c8fc34d5426f9f3693e13e1a5d6385667

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 83b8d3967c4aee0b66a7e8b47a306fa86fed88156b97d78829d6603c5aeea169
MD5 e7e3c2969f8b8992c1cf6c36cda9d1dd
BLAKE2b-256 95af1fcde4e6706760ea28e76eec571dad04dcb516a63db1c9d2fc2e5b45a1b5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 038da866c1ae563d465bc8a883d1e0460e02a190a034b23c8b0d9e6ee326a060
MD5 7c8e1e3aae97b3773cb1fa3efe8ab7f8
BLAKE2b-256 447d17648d105bfddd950f795c3783eca4060a910bdd72e2a091f5767990b7c0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 26ffb54ea2e7340319618cb8df7246198a2c76559c3cba926c0dcfc85f1efbaa
MD5 e5e9718319ffb1c68b02fe2dc92fa5cf
BLAKE2b-256 2a26abb007318b074a14e25a965293e36f0e42d310063b9d8ca2623d3e133266

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e60bc4be67fb2cb72820f971000f1c689f8a11162d3d0e61b25c215c403bf9c6
MD5 91354786efce474563706b93cc0ab6cc
BLAKE2b-256 78d934740f660554efc435fd0f314ae8fd8afded023e2f36d237be3c39576923

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210910204211-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5680411296f622c99ff894330eab38416722d5f02f18e5f0392761e642e1182c
MD5 36e9db5039f73adfc35c294cb9cb9534
BLAKE2b-256 ca41a4cc9090d885d2f4b1325a144ccbb02c96f274e9a7d3cd300352fadeb54f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page