Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f21ce304098b3ddf2bc0ce2332eb20addc0461d7dee80b8ecbfdb19b907e34a6
MD5 117a264c05c5c2f9b23d867b6cc7aeda
BLAKE2b-256 507ac86c1c7e44fbd2456531c0ed91894d931d0487a7bdef38766e3f6d9b1669

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 901769efbfe0adb7549fb548e3c84b7c99d04f56981c9e99697bb5d9bc9730e9
MD5 1c921d0db69132c560220e9196c306c2
BLAKE2b-256 e0e4df8377b98fc182e2ee85faa831752e7a1c2883c096ac4e9524a71107e6d2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 958d48f400b7ef6064cadeed265b73ba295c040034bb4ce18ebe264baefe89a8
MD5 a6fc2eff115f9d1cec2c19bd2692ac57
BLAKE2b-256 d228bdeb1e5c5838c27daaf5454003c9476f37f76025787681ef28b9a7e3df8a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 30e6bc56bcd647d12a1fd4bc320e51fe68bee35ebede70887edc860ec924c214
MD5 97cd7622574d659637299f9e9001eb73
BLAKE2b-256 0fda83e8024abdf562d1a086b88ea90037a2023e1bc73ca04dc815af2777979d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 931aa4558135dbab7cefbfb09c8a9e08715cabe53923b6b7a5d9113b1cc10b3b
MD5 9b4a1058c9c7227b3f219b5eb13dd288
BLAKE2b-256 ac37eba86c44119071b9b7349b2c098966d989337d6e95821dd68547abd5ec67

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8d2e98d99b30a11835490701990fa6d05d130ae0a58112d4ab3e78f30ff57b96
MD5 c0715d0121cc85d0c20a8cfdd2127fd1
BLAKE2b-256 9880afc00deae60a1d7155942bd526a9574908c6ce4585a6ad1853327329ed4b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e882678be5e7363ea43fb84d0467f8c378ebf8585d2674f45f1689743cb2e946
MD5 4522371b2b8029eb0316d0b4155a3f55
BLAKE2b-256 5991dbfb53b4f96144718f4fc46e7090feb79c26957658556eb04ab6bf746515

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e027b5f33e9aaeb775e24c0837317f6c039bf56230e7e20b9cb44375ffa0b5a0
MD5 6b4e9dc31a14a2e4ce832e4029316067
BLAKE2b-256 33ec530fe1a0ac75b09263bc0eb783bf2f2240b2b010c241ce86e686fe5661ab

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 340d9791d7eb28d6712f86adff94375fca357ea2aef797052bfeb1fbe8020220
MD5 f9d00a95b09180ef67752fdb7dd8fe6a
BLAKE2b-256 78a1d3cc5281fc8e65a467b23e1f4769f3ecc6788e5316b4dc6b03dc709f1f66

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1ddc184a100b8f896fcc9cd89d0a126b86834949dd3577c713b28f87616b8417
MD5 00b256b96713c1333b8fc1d9d99a91a0
BLAKE2b-256 12b1f5828f3181a7bf81a5c4133ea555da801d5866f1e41caab7ce73f50fc43e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 38bc290e8cb2b3294adad62711c059be4fca30388ac6203b465e79126ea8987e
MD5 f125846b895f4ab742a34a161769b3e7
BLAKE2b-256 68925e5f741de072759d7fa77104251021804f9c93022833f4c7fde21c780b6e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20210918024028-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b6576188f943675bc273a2cda684c558cbf35c7e90e2d5959c7e1ffd6d0f4e03
MD5 62cf18af82af650863eb4c395f1f4742
BLAKE2b-256 85342d9ff419a69b2bd32a0d0ad60d83c9af1b512e5222f7c8c318b3d7d3097a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page