Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 15a1cefc203cc801c1cc6e2fd1a8191e9ff72c8561c8ea96cc1e32cd4d996472
MD5 726aae1667e44427c39cf49e20412bb6
BLAKE2b-256 c9d858f711b6900e9bf4fff96903453fe8f2c0065353b0e481c2f6a6fee5421f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cb52bc4deadd2699b0a3f3b700973ef9a854725a5f584076c41e40b3a8610b57
MD5 3107de45d042afac82ff3a694e31db5e
BLAKE2b-256 89890d8063dc4b00ca92d75716ef23c2be1cc1ee15915b967c7a3d4a144d8db0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c59cdb9c94a4194ccbca6a9dc6b70d3944be5a6cf904b5231712a6138226bf78
MD5 e84fc9d3991ed9e9a34874f2dd11c70c
BLAKE2b-256 99d93aa1ce6c7768da9573ff99b47e4a13be4dd2dce1956343cf90a0f6f80937

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 199c4223bba67061e73e8ed0ab2cc09edefe7cfbf0e2de883b78ca433611fe39
MD5 cea8d0fa973111760e02a44ae0ea4bfd
BLAKE2b-256 845d3407d35e8efca2d27b80e33d9957b11afe927e0b34f35215816a9e562f53

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ba2e928a94c0e88a4def7742e26890eb3897b79747d6272db3b4b7ac01502fc8
MD5 89702943b0b67e744d2765c23cf6c0c7
BLAKE2b-256 f9af1b4775c5a2eb0515a5afd99a7b7e9b71fb42f1bb72b159af9f7cb0428067

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8ba225171336a40039109f625b76ab141177f720fd88a9607e9fb985ff41175e
MD5 9e7c5b1960350455743b4503497dc42c
BLAKE2b-256 87baa4c45f36873f93ba4f5076b74134889830b10d6ab9e1c7874de14f62c909

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 57075fa3db7dbe14f31e674693c7ca72781f1e9e809b3b226281ecf413e8b5b7
MD5 1aeeec8e172d5765c53baa11deb15afa
BLAKE2b-256 3cdfdf23581dfa95608be64a55fddf684a385497f2b4521d6184ec570f89ba59

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ccd9cd9f14cf79b42382fcf4e13d748d943cd0e01050797c1a2197aeb44bb36a
MD5 23df0f4a7a62a8b3ab09739b1f5231a4
BLAKE2b-256 09005c3dee87a891f011f8f3522db77a41a829dc99cf5c74788a7ae249c4d473

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c17f8bef29492658b7f5ac33679e92ce645bb6cfbb35cd75f21477c27380b06f
MD5 026bdc7be2c90a4d834963abc6961da7
BLAKE2b-256 4bd5cf263301fdac1df0e0049d29924b1b7955c8a575164bd363b8e9a5f3c94f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f20c933806ceb5b74fb0a5e00904840074eb7e5cf1403e219c888ad3e9f1499f
MD5 464d49ffa051f829bc0697d852861a56
BLAKE2b-256 19cbbfed8fc198b0ba4785cc93cd70473202bcaa52b8f3e0c7f080b46c58a793

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fe7b98ec14971d6bf0db464169ba881580637173d67655ea12bb997105c999c7
MD5 2c2c573a5bf2acd3eef028e847893dd2
BLAKE2b-256 6f8fb662a8584456bc9b1a8aee40beaadd7829d7a2f781f585d883a742cdcef1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012043643-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 272cd29437e063a450e73645c80a42cd190d96601efdea426902f561410bbde7
MD5 91985e4f24192d64f9086f5a0c9743f7
BLAKE2b-256 86d5f153ee58414221021012d8263ed669bd948c59317bcbeddb4c24b1618180

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page