Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 82dabd751008932452b112ce93277b303e2b9ef1622dad063ced84cfaec2e1bb
MD5 b6596d06d9487d874f78a9de4f7a7770
BLAKE2b-256 34c19f29545de9deea1b60f775931d3a15bf43b47db1dca7554854728c5a0ef6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1cf3023b53b00e6a4cafad903458ca6e874a4d8635fcba7e1864ba5132d66922
MD5 ac8864470db226fabfee3a1d9035ef29
BLAKE2b-256 7573ad1a87232bbb2c2fa4314954486909fc7cc1eee2d5033f03d993967fa215

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1b9007cae8b6975fc2a88e4e784ce323de58c1621ec8ba7b0e9bf9ba2a7d35c6
MD5 b8183dda3b6077ce85f21e8e93a361e7
BLAKE2b-256 83eec026ddb245bd2fcbd9dd4ec44cb26f1e068436b8629a9074b878e696f69c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1ab622c21942fb7a27a31ef76dab84a4c52a9df3d8334e237257c2015d3a349c
MD5 4b2df8d38b6f73da45de6fadcdb2d72c
BLAKE2b-256 912f183fad6fe6e09f8e1b71a2278f8443b64bfdb54adf8f82a8e61257b3d202

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 30f7574e1e879c599e2d1042b35f1139639196ace827fa7b446259e8460cbed5
MD5 2aa70e566cf2ed28d1bcf06264e6bb25
BLAKE2b-256 8ed1c26918dac452b9ef447eedf5f34e10e4550bb5bde950982ca6e7ece96858

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0396fef2c79466ad8e301ceeade1bbbb1934d05b93aed47d44b261e1f49679ab
MD5 edf83827f5b41f290658f3dc180693b5
BLAKE2b-256 d302bdc07fcd51cb03673b08e7b3d9a914b2203e0fc300d6e4b0690da51826e2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a04926dbb39a7d04295fb4b1d197e9cb94331d1ee7c8782ac832726615dbb82e
MD5 bf7306756308a8ef78aa4cc6e4ce1ef9
BLAKE2b-256 74263e1c547a3226f1e85ae4f1248bc4affb5815235d6a5824640b419df7cc05

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 445af83c79144d465777dc4d8410fd68b3965abe304019249c262cd64dcfe199
MD5 b39d0206d9d5dc54d93620aa89423cc6
BLAKE2b-256 819d5d8a894ca180c984e9ebea43059571cb9da01d330956fedb3eb5d2c16a99

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 22f4ea549edc84a661eacaa71289ed58fcdb721b735d50847ca77d49b7339657
MD5 1a753498f842725908ba960d6fbe189f
BLAKE2b-256 690267f16826ca085d5f85644064556d62bb949909b635678da3d39180ca53a0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 26a85cc4ea6f2aeb2f5ec263f2e69007069c1eea7fcb48895f14ef108e4772d2
MD5 5d9fefb4fd81a8a7638b8446132814fb
BLAKE2b-256 a279132c8d07b7c6eb1542cb586c5879f0e28b7abff8ac5f8a1b7a4f3f327726

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9a6db6f95384daf9a8dea5823a0818355fb6d993f2cb24115799a386bd6b045c
MD5 c6f460c58288bfa72f813dd422a27257
BLAKE2b-256 98bda9c8a759609987d08c2dfe3655a49049db9380099e2c40dff9a962cfda70

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.21.0.dev20211012172635-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 499dfeca958550ad5fbf6c1b7c9cf2738b69de5510531c14a1139cad9dd6f16a
MD5 dad2789d27b6aace569ba2ac70ddfc79
BLAKE2b-256 987fb08c25137ab40f57ee596848abd99802dc583a7c6c72c2a8e6dd9a9dbfab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page