Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c62fffe69ea8637583b7df6b92fa17e9d8e9da5e03513ac8304284fe1d492f9a
MD5 9a6dab6a41984faf1c22c31034105ab6
BLAKE2b-256 0f7a5829f8fc4152795bd64ab55d973509551a76abe7b99cbcbc706ea15bc621

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2e72d7b7e6b3e67967816c5e12794c80d05d45641b8a9e5b43ddce53545bc2c8
MD5 7c62d3f2f50d32eeb83818a0e45fa946
BLAKE2b-256 7fb95f9a50aff1182818d1478ced3ad703d7c101a9e0c454d987194167b258fb

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 aa68f328a0371a1cb1d6bf28e733e96ca7e062d3c66803963686aa412205ee9b
MD5 63d10c53a6023f921bf7740efbfaba6f
BLAKE2b-256 e3a7af450f9b766a822a26409423571ffbb2a48dd000c3d0f3f9c09788887083

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 23b66847b400c8cb72af655d36a9f8b2121b464842162b10aabffa7e28a55a88
MD5 3d45f3e93b83729ae9e4411b780682a0
BLAKE2b-256 ef5bda783465723ae817eba2aeba1a3d5146b53a791a8b7582e39c6c68b030dc

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0b93936b2c1271de8912cc4b067d9acc180cacf851ddcdb5611630a430da18f1
MD5 13a80531d874792d2df025918f597854
BLAKE2b-256 aaa9e97d1ec2460a310e72cfb1aa603c8c3e47abc74ff3660d710475615b5f50

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 226f60e45714965c776bb879d65641f07b92a4761c43b70cde4b2408a7677893
MD5 fc18001ecec525445a8b7c8664447a95
BLAKE2b-256 18e8968a4549a33fd41d8036746542ab7e414c9bb0ba2d0b715d9c1ea004ca41

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2b82e7949a9ce95eedea628fa68f27b5cc963ca1366e5b6c59dc899b8f96a4dd
MD5 531dfaa79fe4551ceff5881996c2d982
BLAKE2b-256 7774df9c3b25962df26fb408a466e0db216f1b96a2db6c136dac2308255e371b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 619c82e58f0f66c37f7a06c3db03099824c47c1c2166e6023461106cc1fe026f
MD5 6827bd245c038cb78b52b83c0d68d242
BLAKE2b-256 a38bfd51202360df545bbd2284f0eb946ba674f79e63f6f531c64d998412573b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045639-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 683566ccb498a391683a2e46a3dc1eb71122e043070291866559e26c93ec14f0
MD5 157f7ed3554366303bb2907df90de3c3
BLAKE2b-256 4ad8e389e708556f2ab9dcdad0b569c5bfa2507b2a386e6ef53cbe343b19aa3c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page