Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b35414502620815646e92a2917e9e3e50f70d35527fc24999af0eaf40c0f04c9
MD5 2240238dfb9faae082ec34d43d1e9b70
BLAKE2b-256 c6f23158f8dc6e7ee15353ea6c40adea3ab0c85dc07d3bfc9f4a715fc7891224

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 02de14a3be2573fc3c67ab316fbbd87b023abf66f148e91c242115ebf7c242ed
MD5 64877295c68570c2ae01c22bca0e5300
BLAKE2b-256 1e2816b8a5bb33e3f1705f556d5f4f1e75a95d40f7cd89d1c86b67030e7f0647

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1e87b817e7aef13739c80b54ff3123e3e06b78034bb615e38843c4b11a3352a2
MD5 8c1735e64862b31496cd2424cfb825a9
BLAKE2b-256 7ede2f9e082ef7afdf6903efbc4e01f3b76c2f0e2c57060507822e00cf760371

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 82d6ee2c5b92281569a1936a45a53288af8519136c7cae81985f57ba41a5eb91
MD5 6468959d06d0ef9ccc0d981cabf7dd17
BLAKE2b-256 b85715239688f2cbd6e795454a17639b20c281bd3fe4647f4880aa167c36bec4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c709fbf00a0df535ab44650b673f39b5e7add216a70fcd850f3d70ac546ba15e
MD5 22c1f9f28dd31909d2c190de952fac56
BLAKE2b-256 ba7ad54cbbe655d10a3da9c31aea4f1cdb929c6bae5af32ce2fb7ea1e7b3f153

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e67bb975d1e02e8b37afd01dfad32132d336c9e91c27da488d99537f7a089b40
MD5 39bb74641369f562658dc894055b9668
BLAKE2b-256 563754ff1993ecaf63147c782a7b728339b62583f0b32f38fa2615cc6472674a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c6a854127dda8adceb8ac77114c81b9370b2c64208c3d20baa0f643c2efa4565
MD5 e9faf867cf101c94f61a4521c0be3421
BLAKE2b-256 e4d53b0044cee5b42ea1bb2616fa305096a0a7acc2572438eb1c2902e7aad931

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e322e95e9cf3fb254303c2ce1dc92acb1d49cadb4394caa14c2282d325bad527
MD5 1566cb87132a4a95ee40ed1bc8b00d48
BLAKE2b-256 274e586954831eaaaca2a86cd08d43645f1380d90dc581cd13efa07ffe21dd82

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211118045828-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5f17306d11c5ec429ee956bad60f46fa585086776527124016e5f407bc429eb4
MD5 96184040a0b8127e884b426f77d114df
BLAKE2b-256 eefecca82baeba50a7a05862d590ade57cb0ef167271bc42f6601631cc080615

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page