Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4e03dd21ae202650c9d014b4545d844204dc2b9867601cdfac7df4eb491b45ad
MD5 85f97d37a151e49e2ff2550e27ca7854
BLAKE2b-256 fa9aeb5f428c5068ae234f6a4f85701fdc5f278af94161b1c07dd2220d7e5094

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 97b8c28eed97c6e364d5d5b586170ca2d6f92968fdbff633929a529049c4d086
MD5 aa105a342303ac500fb2de912ec653c3
BLAKE2b-256 fc9d664d83f73b2244c1d8f4f83dcdd98e11e35c3ac5ebfd8ab1588586d2fd88

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 474c075fa59f9bf95d5c5c7af4c8351fd9ce82be77a73d33bfe1158ea48922b9
MD5 27d7574867d00a0e368030bd0760dcbf
BLAKE2b-256 1d96c12753930fccaedaacf4cbb1269ada766d1302db5b486182c8eca3e176e1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 316cab7483f00edc7be9b30bcea4f34f1433ae99d35c84c265b08a4c6afaea75
MD5 f987957776653f07382df52e46db508d
BLAKE2b-256 ddcaf9ba0b45007aaf850b0d087cc4ccc4a283bdfa52ed849e180b3ca4680cf4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e48ae1ea4cd269cb2e2da1f2ec171ffe07cc8e6c05e83fb5fe6cb837430fb21b
MD5 ac6779ac2386d68cbbb9f896d34c234e
BLAKE2b-256 38f3cf8b3645fd64d2e9e2e4bf58f1f4d01c29c6e4010f33be935f068fb2464e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0ef6db0dbc13b9b948d4e905131322f5d9725918b9a22302bc7a0e324ba0fada
MD5 75aa75b093bb6f5cbd59d556575a64fd
BLAKE2b-256 61c880fe52ddd87b69811fffaaa6705d21303feb7e57d7d4d8bcfcd8b321d1b2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e6ab8655c0a249cbbb6534e0047d40197c06bac4d79226e21264be4dceb2fb85
MD5 3c11a1f5f5523b3d614ec2d913ae46a8
BLAKE2b-256 dfdb019747a9090b7a732794304d3657cf4d421bc4480cde583fd3a2f166b133

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2640981bbbf700d900b68b81ffa51d1b988ed35f1982d57bcc4d13c86a8dd99f
MD5 1509b7660bb1b822c850cf44c5e3b2f5
BLAKE2b-256 3035ea26e2a12b3caf8e2bba655c596a6d3b20b0e726efd751f744f8c708ea24

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211120060409-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d53659775c3dd16a6f5d44c2a02c96e0e8ccb99a4b239d8a5e9ee41b5dfa5e62
MD5 a24740e1d99b7e0fdbf920044d54510d
BLAKE2b-256 b438eccee518373f489c8c3d28f1b97c807e53e729278194d85fd01921440ed5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page