Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0fd7fab00500fa79f921c9f4cda0d84209e88b71a8f77bdfb3ed2f454b2ac9bd
MD5 73424e2e9fcee0d92c7b667803b0ee14
BLAKE2b-256 d2f815b06365d945c7128d9bf291d510e247854e47c4ef78da6b94f074a48045

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8bce09214cd0d0b7e0e862756a2fd91abb081b18f26be7448df34029b2f55bc5
MD5 f1e38a23dfd4a8bf64957e89c64f2bae
BLAKE2b-256 274fbafb6e82100030d0c42e30a2b538d1cf646e7ed78dd51c675ac4c5f0fce0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5eab07f1d82e066db0036f0df031f815a85824b08ee11679bdd324529a109ebe
MD5 44c02b06b762668a858e651832fec3bd
BLAKE2b-256 6726b4a53ffb4e00db187080dabf5f5ae827071fb3a508d7435dc71982fdca39

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5635c4f734838fa61d86948809f6c6e09c964dac17b4d943a63a829c9a2b4f98
MD5 7f67943c0b9f2dde2c777a86b2c2104a
BLAKE2b-256 f2a51a8466e189e07d9216117f4a6797a7feab600bc0f12378075fbb2e44d81d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a21763efb8d65f18d7d878a08341a90251d5017422bed32b10ac3af4b1f87750
MD5 6341699e02d676f47fa2186a5c4ef017
BLAKE2b-256 6a9063b797351152f85100c5b34a9e86d87e737b19751aba9e4c512750d02377

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9e43903c741e40d6f431374e9b13197ce23b14f0b35abd91c8c742a3989aa347
MD5 670802d0eded2e04832254a842f0037a
BLAKE2b-256 78c222eec0708dee2f3ca22dffb9c749d9d1b1a567e00305a2799d38900ffe07

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2d377ff2c5560c522cb6932056ca4b3962a55c61d8be78a4ac384cbd21053c2f
MD5 5efbd67e433abbed7e32e2938977dcbf
BLAKE2b-256 3aed0dd2288878f5928c022160787232e726ec94eda6432657215582e81fb57d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a27251cc458604d1ac9412ae8ba70103aaed9e046682c7886c44d1f4a87867f1
MD5 6763d9bc2ea8ba75acdb3e219ad7133e
BLAKE2b-256 52208334b20026e21da194755b0880fa031c786ed18a6a750c108c84f2ee008c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.22.0.dev20211121053937-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d8646e3754787a2facc25d5ffe443c327d35440605b25a5457abafd413318ad0
MD5 a40d0c0fcc133409776ea00d53499938
BLAKE2b-256 a1d60b53466ba8e5dabd90f4ae5778f7aaf69c5d39693652a2498767441d1e28

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page