Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4e50e9e15473a74f99d6bba2ae277628868c9a10a2f21984cb12ac78af8a3c12
MD5 856540f12ecf0bbf3f5bb4aa61982d22
BLAKE2b-256 1d155d511dfe28d8ea9ea33da43740f9b255f67747f671b0201ebdc9852f2fd5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b8d433bb67a7b8ef879f2c98c5082d2c976eb7763a5d3cc5239a64624b278f61
MD5 c45bc86ebc984210cf48e84c714cf3a1
BLAKE2b-256 2b63835b55dc9cfecebbae3a83b4646abbe9b7b8f6cd3773546176e4dccab421

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c32df01068a14f126c458f7c58a822ad0ce674ca5a4177eda88329768c42a179
MD5 79ea14c3028d3708f8752bcce6b47ef3
BLAKE2b-256 9af084a8f8a268fc3b4aa4c829c80e022208209176f2aa0b5e9ea54757e0c490

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f2c0e5d8ccf43ecf79fce7e3ea81940fd951cf057244cf66072bbb3fe7693cd9
MD5 cd3cb7945bf6044aacc3412b31650b31
BLAKE2b-256 5d69966400fc1bcb591d6e1e3ad8bb0e377ec49a4509bc0a999feca1698e860f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1e6d78200445b225561b193309ac510b5b53032e2c1a48b9c6168d512abf9c42
MD5 2e638fb1fc3024f008a636e078b6b6e4
BLAKE2b-256 4947cbdca14b4ae2c1b50c0f34fff653211822a33bd93cbca9b1770a57ab4f4c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e3ba882cce569956bc25eedc13ba2df230d73acbce6736de24364604fbb76723
MD5 30b43d8fd45777dfcef726abf8daf6d6
BLAKE2b-256 81e1714ad660903c26541542a492a21fa119548bb039cf157a797d8d365cba55

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f7dca3cdaa7f93a348cd6f361e64fe45c0125bd1938c112b6568a01797cc3165
MD5 7c0893d8d902ff27e9e5102473ccd6de
BLAKE2b-256 ce9dd8ac15b4b2ad6543ee33ee39ac2dc815fa550b3708a00ec1e138fcc803e9

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d3a2535a8270f65db9285f9a1ad4c77e25a3eec708d5d59b296a20037f966918
MD5 fe6770e4f70ad8eeeb961db0f92c9cec
BLAKE2b-256 7fba7803d35f085419254b4a6dd7d80ce7371e348999816c1692314a5fbdb74e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 199d75541d2b7226e3754e0d27f692df25326db8e043b4c1734a52ca2a438e6a
MD5 1d27f725d5608b97499beb7d71cf2bab
BLAKE2b-256 2509d044d5398be5c2aabef1c03c19edcdd187ed4598dd54e22dd7e943b35d7f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bbbbdfe02531df80a0d9cf7324ab6dfade3b782fe70fd026b847730503af507e
MD5 51e970e4910f9b40dd4bc6d34bc87acb
BLAKE2b-256 cda7be93e9feb54a65d031605e84efd453ba1327853d6edbf48de3fa86138895

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8804f4a87f9fd5a7af7f2466f132ea8bfac03b839bb50a131d20bd32ca939d1d
MD5 26c4455410c74b1152eba3d6d5daa966
BLAKE2b-256 e7e8a101d8c13d79c5455756abc42a3d78ac3b5f9e8369174fe9f3f1d72fc26a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214021907-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0005d6a1ade82c3ae8193e7d13d6bae278f29de4f131ee2d79ad4920ada48725
MD5 57bbbabc0945221f84c1bfd3051b155e
BLAKE2b-256 9e39631204e93eb5e9ac7e890ea066991ea8fd6d986610e73b130496ba092510

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page