Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 89b6306a5283a9884045031c142fd8cc70602f9b3b58d8cd11d5c97791337996
MD5 a9cb9caf1f21938778d8fe1869ad3c34
BLAKE2b-256 7683f45676b68aa87ccd8435d91f78b215b88b4e8cb468c946a3c7478a7ff639

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 01b1e4d36502a91492003c17cab9c58c54e40b4c0401c5c6668bee2fdabebb83
MD5 1cf428aac1cc0957349b3f8ee4704cd8
BLAKE2b-256 7faf9c31c32d441b13af8b914094c2fcaad3e5d1f5b05efda19e1bfcfe92e5b7

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 42f988f790dbc2b40ab9b83ac2c1d989552b340df3e51fcf468e3eba09c50c6e
MD5 e6871954316b40fae77a949a2321b233
BLAKE2b-256 74de0741aa1049625a11327a0fc34d28539fe56bf1a62fceb70324ba812877de

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d4dba733e249725c9a531d95f3b445dcc73fefab9cffc71f30eaeb77d5576963
MD5 6f8e37b55b1bceedd921d51485a42cde
BLAKE2b-256 ddff26b3d2100abe7cbbce0da52b3c9129b1dcfed46120379da2285d16e4a9ec

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b3726a6d217622e6c3638afb647b7212f225f22d4e0ad2d2404f22a0057e9baf
MD5 130ee3ffbc9c21934a42537af7497b47
BLAKE2b-256 028418beed8b8e3395de8c14060a012873d83a7ef3151061c7fe800bacacd24a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ced42ec1ee1877abb35a0c51112aedc460345b9fbe058ed0d3063994df0b9c43
MD5 6a31e4414ae3284c8a23c6152277e3c0
BLAKE2b-256 28607c38e06f36f73ed7af1249062e56da11730b2a041b10dfa1fee5fa730b4d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3d3c5fcd260532175483712113d886ff405b4a27340bb5a9163c9a47d029071a
MD5 c1010df281c49bb02356536f7ca9cab8
BLAKE2b-256 2c50c9cbefb9021c4a28fb0154d29a85fe6423b932b642de6f02a944b9e104b2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b8bbfec8ecc1238c46b461b262e8ed5d637b2c7ee3297f1b4d4f8145c187ccf9
MD5 2484796598ef872f4aed3cd72c8c33cf
BLAKE2b-256 3626f94711eaae8152fbc1b4eedcd00d7c711f0e9786a430f0adef191efae692

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fd124f0500135581401e4c9f9f3af4a95db051c0b886161689013cb2bee1d137
MD5 79123fefe24bcc3fb00c12cc0c11c033
BLAKE2b-256 10ed4702ec567fb9310421ccef0f2a2e1cb15bf6798e9b2b9784f50caf672099

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8a124c294ad2ce44ed13ad1bb2763bf163fcf5b1cc36bb248bae2294025fbe14
MD5 3d8285124b35bd8584b7679489e1667e
BLAKE2b-256 3dbe14bbe8dabd60d398aab1eb8798d72f8b96812844727675a1a70d881e4093

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b2a94bb5930adb2466bc8ae16bcc2223a6c1942ddc10023921517b52cb7f0708
MD5 bbad1ce623dafcf4866f7f176b184171
BLAKE2b-256 529337b02e4ca6813172a28218593d83d405d7b96e5d9440f072d6f5cdb86492

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214084259-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3b8637907bca0bc79a998375fb31f42b33acbfe5c17e2d7e0711ed0580d54561
MD5 1ebd9a315c049f9a3ab6212eed6af271
BLAKE2b-256 3cd0c6527f3e8b2178328fd5d014732fdbd397bca4b326185ee9992f93d54bf0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page