Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 985a089fb08afa6fffe830eaf9386c145c466788db6ad3478aa8005e0da14834
MD5 6a373563e6be7ab00266855ccdf9493b
BLAKE2b-256 e116925f76bb5d1bd0123bb11030df4bbe29a137eb13ed03137915c1c2d0e9d2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d73f489438900e305d823a91ab523eb3fb9907ad3a1e523dfb9817b11fd023fa
MD5 69e1c217f92fad71382118593904677f
BLAKE2b-256 29193e225e35a835967364e61b7fcc8f7fa28978a28b068eb79cea76fb20117c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e2baec2eb8fd1abe08552c8c45c15df31cb466202e3903916426dc190c20c666
MD5 01a66b20b9fc8555446bc67f6ddd42af
BLAKE2b-256 31290e5b1a30cfb93fd5e0a73aefe7e53097dbdfe0fa28c2be761a234f628e5f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cf3ee311f55b9966dd895e723a6deb553be52e5fc35e498c3b77ef354fe5f67d
MD5 7be2c3e1ec207b333287871bddddff7b
BLAKE2b-256 5366a2461feacdcb62371b537f0b32608173fb6e478d2e89f7cf6afd625f9361

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 78fc7646a667e256c26c1142d6fe0b29f0cad444a7f2ef9c959084e9ac2dc84f
MD5 a2df9ec0ef6e315accdc06a0dc09fc83
BLAKE2b-256 3fff7e1a4abd0aab65125674f7cc8144f8105efb3f10c73d904a9a8a472b6b16

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ddc729abfe83ee6dfbf76811af62a19178039dbea8f4a8f1aee6fb46611e7a39
MD5 c702b7d82a0c63fd811b59e94c283803
BLAKE2b-256 233956480b47f947fc5dc466804fa88d9bbe069c04b36ee6bbeacfa3537d5c29

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3ad4b4e3a96460928951a127ccd7ed9ea6b12d06d5cf0a7990bde588a3e0d108
MD5 efde6d4dd975066b5510534b457b9d19
BLAKE2b-256 ee9d329c4f34ea162eaab1c3f5afc21549d5b97a7a5f68117e7677dbd1f3cbbe

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6019ddd1308fa8be1fe1db74fdc9d55306c33b0592f3e277f20ab2aef1b2d330
MD5 5083b162075fbb343904b9a1b32df92d
BLAKE2b-256 cca376d1620f747f7eabc654077d3bd0c6f625ff6301f7b995341a2ddcf6b0b5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9758c23b2d0edf303137706477b15e454a9b96b6a7c904a3413eee59be46e5b9
MD5 e12694332e5d5339ab9e2e88f5074e29
BLAKE2b-256 f3a6eec927642a3940fe3852653996b9db9d6fa4c3983cd286c035953cf17ae3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a6d1acc9fc35d3313b4f41bf658b3a3ee6a66a70f42571a1b79e485649a7719e
MD5 9b20a5ab6d12a43e87391efb2480f126
BLAKE2b-256 2786c5127f9e4674c4d58a65586c6f028861f61ceda2e4c1d1db0de55ab5d25d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c292447def8c257bab24a930168580c21ce970c1c09bdf1af261dc169efd35a1
MD5 516e427ce89757dc06670de2ebd83cd0
BLAKE2b-256 1508633051751b1883477491bf911bdc3ce4d843df5e2d78b8eecb2078870065

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211214201556-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2ac47aaff31d304a8da37a274ac2acc7af78544c81acd418c5206f3feb5e173a
MD5 2c96b91fbd5ab64fe9b6154fc21936cb
BLAKE2b-256 c9ec69a747eda23b91a896ba0f1e52f33378a796457e9be0eb8f6138fd1ec4e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page