Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5210454af808f3c5d48f1d031ec9786e2dcd43d0415da90cc461fc0b55fc86a2
MD5 70afaa51c46ccb39861221e419de6e34
BLAKE2b-256 d12e403fa4daa75fde706b9d9b8d97adde6fed8068e1a3d4384bdfde84e0f165

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c3e3410f462e54d5fcc55d0bf2c178f25dfede54b3a9c23bd3cd1324b94b0b76
MD5 ec9eb3b9ff0ae679a775f66098bd11a9
BLAKE2b-256 b4e8fe38da6bc81931b5d4f6e75f2de104d20a7ebc5028defded324bd4ff0993

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 aaf659c34e40a5b783431a709ff14899b0eaa0271ca7f5ed27f3ddb989bd84f6
MD5 a95b3bdad1c643f4b36290d4c77e8ce6
BLAKE2b-256 33ba2ac367c52540c3bd259f09fed3f113505a5800d5d1891341fdf608a99474

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8c80f258b678d3428372f07b24b248bb9b51ff1d21570021146dccdd03172b4b
MD5 b7863cee669a183582b324814b49e4a2
BLAKE2b-256 00e5a1a250c802f212b6b1d647aa8b601cccd6a40145517a24d1a99c70f79f43

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bc1f6c6ef9c023569eb23239bed203f95a8b3dbce0d9cc5124ef639a8bc2119e
MD5 44876b41c98ad74b77993be8de86b003
BLAKE2b-256 2a37a84efcb04636f364fef01c499fd5c56519888fd2f6e5fa1e7e8d8b26db98

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f09e800182cdcb248f01860fb35b9ee9a81630da2a55b6549434bdff77408bb7
MD5 532e61e6590955ba7475836f108a8175
BLAKE2b-256 9d6b2860d0d4f87601e65281d8f1ccb504145c889973ac58941c8d4c6927d130

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 483827e097bc0700c3e1e38a06071931e7cb9e69c4e411447e3d8094dbeef207
MD5 7705aa7a09e8816bd251a2013a5df8f4
BLAKE2b-256 9873c015249aa8319fb9517e826183d89891e2ec0ba9fbd3daee5082533e0030

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 02b62c33dcb87c3749cc462c5c2240d9d42cbd857f172c969913fdc74580f1bc
MD5 d79c85031c5509c5097a4465efed7cc4
BLAKE2b-256 69b79425fc9cd18073b797c4d702b877be4aa1d5625c450ea2eb44428f68c454

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3d942474a62660d89a400a63bc0036f0da2505492cdc38dbc46b39a0a7bd345d
MD5 a68ff23f6cdde690c426d0926ac80099
BLAKE2b-256 00aa1cb44e9bb1bfceca409ecc0f0cd0de6905832b22676853d5f5f8c945e90b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d473f00ceaa3bd5672d1f2cf9d9abd2679a89d2676946beeaf89fd8c3eae0530
MD5 933bf816dfb90037ce00760f0582c8a9
BLAKE2b-256 a4f520b2f0ebec6cba73c8dae389a229573b23e3397d96e6bdc2205c77e3b362

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8aa6d5e467db5967b3dc3c25bd3b110ffa4b6462158f8705a5434771c4bd4eb3
MD5 886408762b2f73605d6d6bd67270e644
BLAKE2b-256 4fbd957cf816acc62abe7b5144af97263e3e85760f701797e6a1c364fd394d2a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.0.dev20211215013123-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f10492865e958098cb76830d4e17d66df60d442ec985cd3294291bdbfd211ee8
MD5 266fea3129a490cf14ed74253c60af67
BLAKE2b-256 42d123adf0fd6822b903016ee0ff10b27de449692aef4a28ea41499d0b429560

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page