Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 52e5982763a604847eb5c751c9b10b1bc740161d27ac5b854c07b75ec123c9c5
MD5 205e3c951e7ad667a4ea93025bf17b63
BLAKE2b-256 ecb7d003cab83530b0e15318f6400b7faf41ef41130565798ef89652cd6614a1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3450e7d813abdfa236684c8a7c8c1e9d436eb7725dca73cd77c7e2a9d5e21af4
MD5 c8e877519828b515779443851d5bc6e0
BLAKE2b-256 182cf1066009e73997091d9e73093cd074de918f0e29d18f54783ba78c6d62d4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 340948141d3889094ef29f90203b072de6700f342be656b33cfcb7033d8ea0e2
MD5 043e99622de75b56e1fa23b34fc2554a
BLAKE2b-256 3173621fe2245101690804a5879755328387ee43aacf88b55ea04e8954414149

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d1a6a2f3d3ee631d496dfbaa7ea662f7b45faeef9658a96e3b263777f335e867
MD5 e772a1289be10cf4ffcdfc7befaed9f9
BLAKE2b-256 5e9a7d2375c61078a5113c9985e4fd2d5c7d16338934f6efbf9fa24a3a96e027

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3c3dd6227ae9f8f25f0c39b46cc87ca425cb9a738c89809913f5736543fb2854
MD5 2fed172fcaabbafcab68ae027483e345
BLAKE2b-256 51d763aa33ae5a96d99885a2e857770d9bb51eb55a728b5883132088edec8fcb

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2da7acbec58623e7275278067dc0e9e575b338b17e85b33c7cbd2dd2a001272b
MD5 f06ecfb265d170c97b2783c624288878
BLAKE2b-256 948451e5144b11f8a261bc2128d17e715461829e058d55671600fb59ce061baa

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 43d907b4e84ed3d454f8b2d428e7d51481d1e22c9ab1900bb0cd33297515dfa1
MD5 1da660ad21af18e3cbb1ec3b0c3ed732
BLAKE2b-256 9759e5b24a6f17764dcc9be4baebf29902d699f16304024f55f0629f4c5234fd

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 27eb09bda98ecbc807fcfdbf5c96d7082718750edfd5496a0b630a010d3a5caf
MD5 8340423e7ff2a9bc127a45fe5996e3fa
BLAKE2b-256 a67148a1556b7adad4768fabf8b42aad46e5da26e5918d55b7e208764c6f02c5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5a11a05221e8375233ef1b6196a2f1dcffd2ea4a2101d945863df2ed609930ad
MD5 465e5a230cfc206dbdbb725a7948fd9f
BLAKE2b-256 557974eb447edfd0ed6edbdf5a8937cb1771d87139286097b0efade2f2f7bc24

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 669756f468a8b411418586dcf2940e3c666d9f65c66f34c99f73374a407b64ea
MD5 7809716cb363e027ed6cae3f6ce34ef9
BLAKE2b-256 6dbdbf1ea7942c556d14704797347a14ca9f952fcda2f598018856682431cc91

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c1b62a484a1cb9ba4cdc0c079ac3ed2ea9268843de6a418d379567bc4b875069
MD5 a4de07db3af9d82104e8a8d73bb148f1
BLAKE2b-256 19cda698d69d2de92a27eabcfc9160a49f59ed21a8a32d0e4ea44e0b3f64fca7

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.23.1.dev20211215202004-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d9e41621a7be3b4a478a97d13e5084ed34ae343cc9eb66e1ae980681f3bc6a12
MD5 7bfebe52303b0fc3638518fb71e38b38
BLAKE2b-256 f8827a2a0a8d323d3c4770e7586dcba7e643e294ba0608a5762eff46865b9c64

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page