Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b31e25cdc4437a1cda73841850b2868cc64603c57060c00c1c3974ce1750aa9f
MD5 606ecddc3e301709f6fd89170dadedbc
BLAKE2b-256 cb8410d6a9e09ce3c87d9a548be02507ca22f821ce492eb4049622de961d2cb5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d9a357d9e1076fa69b49ec7b0232548640cef866c159ae4c2af0900ce3ea33a7
MD5 00fa78310fe1a828d608366b621f1c47
BLAKE2b-256 58608c36d86febb576bfd19c9173791787f57e134b3b795ddc271dccfd73f777

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cede59d3b9273424dd8a665aec723c01287ded8afa841f5e2264a94677119f0a
MD5 57ab2ee19aa59b351087f1bc481f6b3f
BLAKE2b-256 b2f683a2737dbc5487036c63debf876f99b2dd88c55b574ebf8075059fa176bb

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 421da8c77e75ed5e6c2a248162526c3f7b3b5af299425556bd1bc1461bc58e11
MD5 693e0854568a0f0ef7cd584f8c939013
BLAKE2b-256 c060c419f5187dee36457d3452962ab0798b5232dcb699dcde2a1fbb5b50861a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4288e187aaf57d9c7781d1774b555af494c6380805e77b39998821db3a834b8b
MD5 d99bb3d03dd163915351f9cc16469c18
BLAKE2b-256 634309b7fe3acbb106c502b154628f95371770023b492e009c1759125f63ec84

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 42b7ae2d47ac3e467f50cfedd2f8908313bb5a370e324d99b32b46fb3a53f2e8
MD5 fafa771d5f3a89d74f2076e16bc794e3
BLAKE2b-256 acec6238e570a756949cb9f719141506b951bcfd4b3c2acafbd14711c789c7a0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 da58bceb92e868a59fe8c5eb5ff8e118e4824eeb70a9ca37b176bd71ace6765f
MD5 22c3b6dd9aba390883b1998e51589c58
BLAKE2b-256 8805fd64b4898c109cd47f54b206ff8e27a73bbaad743ec9838f92a0c1402fc3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5ed39b3c99d86a485b278239416a791eb0921d41839fb8d6bd6c0378f5e4f2c9
MD5 9ae578cbf319e29f35c0b7c3d4a2dd65
BLAKE2b-256 b5c124e20bb8a36e3a7fd8e07467a5d899d889d20aaa8eca6123c6db50c06955

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d2a6464454b63405b50dad7b65e4710433026f85870c0360f12c234edfc69aa4
MD5 8c2f2ce3ca447270920f7ff1be5cd9a4
BLAKE2b-256 c4e42ca4b0beee85d80cc75b931dc493bd72e41336ff3288aa102b0ac0766d27

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 71990bb53d75424a73007088335254cb2f49e63194f0d9018694352c075fe30b
MD5 e0f31971c3d6b9df2377a64b493d405d
BLAKE2b-256 8a60f1eb5ee1fb5dc6420f871b3271656241c571f3a726470e9a2a46a72e0d3e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1c62439b9b0f69771e63cdb98119a3e86b20e738dd182d8413b0450bef338aac
MD5 99f42c45b5358a2f8e5e04372fca0088
BLAKE2b-256 21031c38aff34ed3dc852df59eab32c86c3b5d4e54f48bb5bd04f801190f26b6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124025738-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1298bdb1e5d2ac175af584b53e128d144aeee61a645e6979c473f15d97ffa31a
MD5 b96fb3da82aa91292ae5053bc7fb337b
BLAKE2b-256 090db8f24434870c030fccc4809ad9bc721396dbdaba09b62b3c4ce73d2a9d77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page