Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 07bb3b7cf55ae7d53b01123e54e909bb20a7ebe4ae56e598377d67e2da2e87cd
MD5 02066835db5d7b79009f7f8936de231b
BLAKE2b-256 b3dd713abfd2a8511afd52a711ac66a4d0838cc6c8e59aa785514b8a6ffa8f58

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dfe576b0b65478c3bb2f269909715936dbf98042413787cdb5adf5c9a7621d24
MD5 d076f77249dcf57645c6078017a2c144
BLAKE2b-256 53fd8da0506d76ef9d7772ce6edcb96e13f19f38d1525cebaba00b12a154813c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dd1f05fe6d73ce5739f90e9bad262014ea622ede5bf978b3defb2d048141c53c
MD5 cb03063267904b04eb3c164f6e689660
BLAKE2b-256 d44cdeafb034f3a87f4afa80fda02039299feefc8fccc165e8ad2cb84e0fde14

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7ae1da4f8f51e26831586b4f22fd10827a3ee29673fa8f7a9f947f6204cf9637
MD5 809b38b4afe41c9611c616ae8ab793ec
BLAKE2b-256 05caa4f755ca0619223c9ec5b782c7a65a093987a1c972313d9968505e52f257

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a2f75e265ddbe0d5cd961cc2e4413ae2811697d612df758f3b40e5d0eb620a9d
MD5 738c3f20a6fdca98af1da15656f0a90d
BLAKE2b-256 ca6f14dafaaaf829f99380b7550778206b9c6b96ecab2fd9a23ad6f623a08343

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 393e0a5d92b6c492da334702c0d0b5bd6a7746926a7598e5bda45b6985c6993c
MD5 f5e31c4681e160437881f92b4965eb26
BLAKE2b-256 e6c1a6aeb2c77b3809d7b7b7a72071de452c01fee69cc194e32d4d434ef2e25e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fb4a18eea41712228a84cb0fdc1bc3a9337fa64b888f653eabbfbd6258c6e325
MD5 7b191f9d4056289cde9c2f7b47c95b2e
BLAKE2b-256 16b0cfe30cd219e8b2a726f4bba29d7b078b940ec00418bd3d32fa51ced297ed

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 abe5f1bd9041890c68f35ac423d103437334d57e4ae581e44f698dedd55486a8
MD5 d3451b0dbb53c3e3a4e39b9d58922675
BLAKE2b-256 227e3b36a3e4cb38ca12a2ec69653614ec0672a10cc614a0835c3432f808f335

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7a3dd36232ca5e0f047a3666796a1c28b5f108cc500d952aec4cba943811c8ed
MD5 fe0f3511df87f465e09ef09e098ea39e
BLAKE2b-256 0c9430d83286cf500c18602655e1c67cdd859bfae88c1c2fc6b04c237a068610

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 17b098a8d13fd832613d3b29d18d9d7b52a997ead0773b6c1752a02de4d6c081
MD5 b8ca3442b73cb82099684f670cc3b4b2
BLAKE2b-256 09e9723db0c4621ad6372fa63144737121c30e7a1fc10253dbeeb35a3533ddd3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ac3b6d511a899ad2962fb9e288299dfa89766ea77e303a85478d28aa9b876e55
MD5 656c62b03c0c1c2e77d876dfedd09747
BLAKE2b-256 80e01d55fa14c638ae15edbeeeb9d92597353b5076da2ad016f8fe7eff72fe43

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220124143608-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2bad3d3b162f6f72d117d9a3c71534408bc0e6d4b801a3e081303c4f55b900a0
MD5 a5d651b4110863e358a1269eb16898ad
BLAKE2b-256 68c33f80b2d3776c6caee6d06de7cc8bc52e3ccb8eee904070afa6d40121bc4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page