Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6274411eb113881c558d9eec021e39a37b901bcaae72358a7d4ac8d5fd63a3dc
MD5 09a43eaab944864e0ed9ea8f838635e3
BLAKE2b-256 3f139a9bc8f6592c4b67f6c1e6dec5fcd8281c6958734ac999ef9b9adb51c14b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fc240eb35d070341ff41b4c5c153f740d655cb2c32a95c90e8462105f80f1a36
MD5 e45c28a6ed086e21b7c1a2fba8143dd6
BLAKE2b-256 8c33f95ef5b4694f5e4e24ebe724bc93f4d43d5e8baa5b89c244db8e0ce1aa03

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d4b47072f10755eba6a6a0161be3e9eaf6283880e90cb20504fc70298737198a
MD5 35fba904d875d44ac56a198348081d17
BLAKE2b-256 11ee6ec9d28097fa7d0ac0ba2c98750538d276b307019f3e572930209bb2cf51

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e1afdc7def56ba92fa26331b1b409310e2ba3fb05284e0b2b5e74624be9aef6a
MD5 deb3b5112e1089cb68b40b1ebf3c9d9f
BLAKE2b-256 daba443c6b8e214a70234250fc65c975e98a05df0b4b8100d992cc23c3626ba7

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c772e296fc4ce194d4ec97fe79318164fa282e76e7481e7fe6318accd9614eee
MD5 237bdab0fdb6c3c991a6a50895b5957f
BLAKE2b-256 d5a0bf2c3b67124f2d0cffe4c8f401a713053828207c2d6b81def9325994d609

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a3a974f875ea40079b7b6c9692196629dac570f28eb6bf16761a689a4d799b89
MD5 b396f55cf38f052d31452ffbdc884f47
BLAKE2b-256 ebfa9c04afe0555ed7f27c19ebf7b2d85aa779ee11cd94fac791ff668174e0df

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1911f7417e06b971bbf01916f65d5829e89537bdfc8ac31ce98c20f3aa50b77a
MD5 732e714ce9cfb1ac780979e822aba191
BLAKE2b-256 6cb51d3f18bcc89f05bbf3eb5a0c3f7359cd2fc6eec9d1270b748d62b43700d1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6dc1af88bc59a06b916c675420f9f465971bb1386b2315568fe3895ac6d8a870
MD5 e7e87631c9ce1c1b380bfaee4595135b
BLAKE2b-256 92d52088364900c84f8b47e14aa4fbb148727dce1e92a6db8b36390bb19bd393

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9ef940ae3811e92ad0662f6291d52adb4b6c5be65f3c365235093b9cf858b859
MD5 64414518e52a55f24cdb615703449a30
BLAKE2b-256 dc3f95e71a2a3628cbddbf6914d2a5fe34bb446246728b4e99ae245d57e23df2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3a0affd28efde071ee8781b75d31bd42e6e96c8b0c686f7d80a443d07961c104
MD5 1d4503711f996cad16c527ec786db261
BLAKE2b-256 2979dc713a87855661db8944e87f34ace3ee4b606aa95bcbfdc08ec76dcb4445

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 371869d762a34c3725f93e0c16e34e204eccf809b62d8195cc52e2c4de5cbfd1
MD5 67ed625e6e3cc70e1d3705afdb9352ae
BLAKE2b-256 67f0ef70c2fd309d58d4bdd05ff7f0c9d0de25aca4614cc4ca0d475447fabdf0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220204181652-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 acc9c807f08b035589e9d7021f83569174f7602df221c82c41046c6af68e0d14
MD5 0370f634e026391755ac415bc1a7ed6f
BLAKE2b-256 98fe4a53bb0cfac540719d960da6193e39a6508a491c5c4f0a13e5a4c5384605

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page