Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 15518bc97fb27c48305acb6b8a7480eda79605dab5ab5cb8f6c78b01c0d53ab2
MD5 78b7900ba248a7a8d726215bd181c8b6
BLAKE2b-256 ec8342b416040a8a822a04edf2a7f9fce09d5df70bd2a35ca06139df5843ce0e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c2eaa708f50d9363ee3b881ce631addd21888606a5219cbd8f3dd7cb7c3547df
MD5 bb282f302915f67b8564b1f212b42b25
BLAKE2b-256 1a2f6ccc109bd793fb311ea79822636869ea5ff1474eb54b2b11a15c045c235b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 96a07ce94d577bb9ec85556940c7fe1ded517a6c0a19e4846e890fa6e3cb0e2a
MD5 748c5332688ffd2895ec0a5948882e3b
BLAKE2b-256 c8d473122a71f19a8493c36643162402b29a37073c22e8c7786b0efa9dacdda8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8d1f4e531a81d22c89e14b0b80a7cd2a22350395910fc6763ac4fb24351ae52b
MD5 5fc2c15ec628b3424418e6e033c949f8
BLAKE2b-256 13d02030c8170683b019e56e9c54fdd32caeb23f44d18e4237c6ab6e19acb2ad

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b9a0c4781e4080c56bb92857c1fc57e03b3f47ae4a7197cfdf164322b7894a85
MD5 5d132742ade2a6d817e7ccc0af286057
BLAKE2b-256 77c57edc4eca8863d68042f8f5a59a7e71260691c272a32039f19e1f92da8f3a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 66a62de3e315a07954b3885f9998042f193451a16666415f88f7dd8d0ac24aa2
MD5 9f8288fc86322c25261e1ac03d0eab49
BLAKE2b-256 09d9a47a5ffd0c819ebe06c4ec6d74c9865ae67bca55e8052c6374f9a29bb127

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c97bb9e8939d7fb2d4bfd19971439de567dc03214b73af5d88802faab2b46921
MD5 3d7f8eba854eab487fcaac5d3e2414bb
BLAKE2b-256 b5b03f67798ca35ef23f0c0d26085d4c8c2189b2c477231269bfe21b2c34779c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8385dcc851828db11d878f40a5edb72fea3c84ed1cc7871c87504c6c2e569bcf
MD5 5695217df4da1d0903f4309cb826073e
BLAKE2b-256 1dbeb661c8db3487495ee8fa84c682cdf8eb0812ecc19443f2230c4ff36eedc9

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2efab8c04fce6cbe74b26c526d0645624e5b64c49222ba383573506cbaee0fc9
MD5 8970c799fd609650e6fc3bd5abe4ea0f
BLAKE2b-256 795e514d063564470773df5c4628e77b3601a434527581d58e884612dead75a7

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3d13de136c3e553f2dba7cc46e2c3480620e1fe9b9da9f93339e2baa9dc2a6c9
MD5 d0f41dcaffc8d0015097eff0dcdff361
BLAKE2b-256 c8e4b8249ee345fd4cc91de24cb634c1978670ab42eb7f347058dfc250af7819

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 24632699cd7faccd33bb616b034b4814532f42343b945994f2b27f6d9dcf5db5
MD5 058819c991ef62a51cb3daabcddc127a
BLAKE2b-256 e1b44ad0dc622ba28dbe99aa7289c49638475c32dbd98db69a31c165a1b90838

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220208203249-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6d59738f84edd73fabf3db83617bb28d963293fa90e443a58f52afb6f3ddcdd6
MD5 b7c62e39b826372a16ff4456c3333e37
BLAKE2b-256 7a95162606ce89fcc4f497d2c933515a0a41377cfa5156146d25ecc91c553586

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page