Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9cbdcdff6471e19e69d004d3989f65798d3d95da53bbe30a565ab6a05dd8cc1a
MD5 ca08cac7f76e94096a2d36d25c735895
BLAKE2b-256 25dce5db50f41c32a4080370fa715848ea1c84710d314304a8065f6834e6362c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 129362ca154e27f29d3a1414b8727482de4e49e9864d076a5a70335bf067ac51
MD5 437256e0a7b1bbbd46397a9e1f5efdaa
BLAKE2b-256 a937cbc497cafcc734f9bbbc38e44e0447b43d9cf21f9b6f38c304c1fdc9a841

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 01a4b0280a7639e3f845b8e4e7aa58a1dcec04eee667eb4125e0e911e6cebb68
MD5 753e715a827d4f4009d48a14f43bb27d
BLAKE2b-256 19784da29d8f9a393132efff3e0c301c3a2c32e24e1f243d855ef7f51d9961ec

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1ba88c346bdbc4b5034a75fb356fde0fdd5388444507e27ffadc12570cf6fe5d
MD5 65bbd016bd425587b5a88c948d581675
BLAKE2b-256 ab7a27a83b6c4205fbf5f366952b6dade6299bf791610828e735486b2e667b84

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 19c0e22f0429c1f8d0bfa38c509ea113315d7f57d84a772237d7ce4865316310
MD5 5b9a90e04b3239956ec54ea36427ded5
BLAKE2b-256 29c08538a525fc4a8a6f603fe9b867e63165c962ac874951d3f7674c179a7e6f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 199718ab3e1c095dac56b2ff4fe390231695f5b43b4d7d5d424e7bf55a92375e
MD5 360db26e3b74090f128579f99bec83ac
BLAKE2b-256 c535e700e8941735e10ae2045422ec1dd5265fe1d9d0a7acc270ff6746904b45

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5e58835789ad73722450a85f4dc3f474cedafbaa6e744f33f5c6ecff20742f81
MD5 9546b2d22363babe0a67f193ee8eadc5
BLAKE2b-256 fc5aacf3dcf0d4de6fadc31a070e735b5aa37640a78a46799c1d2bcc926e335d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d2151f9522e05cc6159f810cad653858542a39a30d119b1b775a1627d2286a67
MD5 8fdd3d458100b298a2a28b78ee6e0176
BLAKE2b-256 9e7bedece4749c494e174166e0fc9712052edc3ed7a1332a8a2eb3a49f1f6c06

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1ad40b2dfb9a0ac1a497972d02a37fcc1ba056186b00d785807864c77e940dcb
MD5 3b0c1956667978fbc7d1da4529401c8f
BLAKE2b-256 24b713e4c86d732caf33e886efae76cbbc057e1c9f8d53e9b4a48b6cbec8c19a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 541b7f6c6730f5a718daf7d483f864c8d656e664de8f5fe0bd363676e21da715
MD5 8719b8965da6d43540d8a370263f3648
BLAKE2b-256 ea551cf4031282a8e716f2dc8acdee95313a853febcdd1f2a6ea4c06b51ec45b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 26a8b45bf7cbd9fb98778626bb4b28476c9a663db6d08f449fa9b081f76c17f3
MD5 bd3201a6e0bb9f59160e1fa23bf7fa8e
BLAKE2b-256 08a9ce0f1570d4d0f7b2c96d096f3729851bdd6a7d51808a12f71df5c50d008e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.24.0.dev20220209004551-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2ebaaafef7d80bbcc2fb828383fedd87d03a88f2e86fa2ff90ca5bc9b5aa5aad
MD5 d6ea8c711d2f116a47b3b5fca7f66370
BLAKE2b-256 6393b01f9d4f96d5399feb0165c844e19a602204bbc5b526bcb1b455466e80d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page