Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c93f65bda51daa234f6957fa96747467bd7024abc34a5ca6a9151ac54eb9f7ee
MD5 4354d3e0981013ef4bc0de9afd812674
BLAKE2b-256 c2b39b970c4f2cbe8620ec9e8f11bb8dcf31ba2d4598404423b9ab4d3cc82fe2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 48c50a5b527c4f6f1ea5334b22a2457fd6324ed3c79a87f0b79e8126b5ebbea1
MD5 d408c4a59cf8491c333cbe3347e94559
BLAKE2b-256 9d90eb3ae8c2d94940844064c4b6c51d76bfcd88400b3c2f5865f8461746c99a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0e1e33ad75b99eb891502a82e5f0654b97c9a21c75b5b4c299d83ebd8419bd90
MD5 336091b02f1bd1acf6941e5025e7abdb
BLAKE2b-256 247df5d9e8839fdc82f87dd4c83f26a848180a00a99c92622be726c126a96d08

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 22ee2a9ecd21c8075082cd9a96241ebf165afa32dc02c4f5ed7ddab787fc1691
MD5 afac61f611a60168a43e7026c03e8a0f
BLAKE2b-256 b4defc2366022216414ab02119eddfacc98ff6c7f86b61df6990733988a172bf

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1c5e0794ccbb20ef9657e63b8035f99d86a3099955a4f64f4f0f172ee0c1edf9
MD5 00d736da7ca456b0cd22aa334c118ba2
BLAKE2b-256 c1590f724bf10c90913e967e676c991a7f886a148de9fb390e14a375ee3a9333

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c0f2ebf118177b5172f73aea491d7d8df0c40d0004cc3dd9706588f1813fec9d
MD5 70ebfec3cada5f03fd1fb173d62d2adb
BLAKE2b-256 df50d7f40da9a199fe777ed2ef9f7b986d2e9dff96ce8c51bd383015d68807fd

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bb41c3855b0ead2ab55e71f69ddbf253407420a5bb9ad6b6da25109e33c8fda4
MD5 dd7fd5ca15e63d50e9c672d3d098f0b6
BLAKE2b-256 95bebf6da7b1e5d69c4886c5d9a16bcf92733bba7b972726f71fd7a5ffec342b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7e02a52ccbba0130bf8f11b2b4f9b2d0b6c45804b76caed2ee92938eed3ae996
MD5 996e640bfacca0ac1de4e894e626c8ae
BLAKE2b-256 d3261f90f031ebe1f810aad81f649ab2975ebbc2a29074ce9141ccb56271a081

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 da66df7d2d694b63ec3da9a2eb4e7d337aec7cd62d527a644566f18233baeace
MD5 06adca1acacff6b875ed5ec20e4202fd
BLAKE2b-256 750088b80443d2e0415ac681ccbd4985af8bc0f9dbc92e19e10ef77748fd297e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 efb0fc4108f0d0a3ace74ca2978ae8714e81924f536e71d0f6bc6438cf8a0b57
MD5 a7940691ff3bdbca5187c89dc9359ddc
BLAKE2b-256 2bbd1c575e4c8539debdd5ac65a164b6df44d4ed3eb73e1600b0e6799f5df555

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 55071fb227dfda1dfb6d363f4987e690ba6b4519c8d9d44f57ce75b9d85b2afd
MD5 b8b3c377aa848433c4a4bf54d8de4099
BLAKE2b-256 72a4b5adfc5e6c1a82f5b01dabf2916f09472138a4ac5d492996ff31bb57ace9

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418160242-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fc26170cd2ccc083b8a430632aafd7658614d05456a214d9f52f7edce4c536b6
MD5 9161eb0e27ca7b7db70612e537dde211
BLAKE2b-256 9e1be14901bfa650212855d86539d673ffacfd6e0b110063307f840c59dee611

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page