Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d3fe83f325e575ff66f6620be0144fa2362a1f16f8bc350408ce65793bcc2941
MD5 7312e9994d3cb8a82d8e94451a384410
BLAKE2b-256 6e286b7c8fedd02b37bd5dbc74fc47d646033256912631de56a9f88da2efc20b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c5267ee4f44928f2e7b131fed1ae2db0698395787685fe3d3628385aca87b622
MD5 309bb684f1bf6d757a8b82e76d45effd
BLAKE2b-256 2d4e7c31e9d16c0e7c533198e72c8361e382b73e6a0ab7690fe554db529a7ac7

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ec31228b441bba0d0973b5837a44834cb9fd10f0b0cd60a702e84e85d18cf102
MD5 e80781e602e0d6447009f79dd6278235
BLAKE2b-256 763189a5480d731b3529246d56b9569be51007d5bc79c05054960d651579b099

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 65c4b2675039ed7d334b666f1900d367603e3a673827551338176c8220a2f8cc
MD5 18b0db11212da13cad520cef2dd62f9d
BLAKE2b-256 622d9ad43c07da7f00dff2cbb826044787bb083349167e147ab08fbb7ffc6108

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1144bcbceb2ff1211ee5a27fea9260cb1ef1834b99326d234e83bbcb7982da00
MD5 4799a8c52d8bffd01d0ea09804c62709
BLAKE2b-256 bb005093cc82a6a2d900d4297184529c964a2966c72cab8d448d46bdbace4bc1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b54ab92cd38924690be00a96009fe7d08f194be7d9c07e9ffeeaf8605ec3b465
MD5 faf51f070d2eae7c4161484a4f43dd89
BLAKE2b-256 d861bd4e9b2133076193398cc994ee35947a1ebe8487ec9e5a5c78facfa3e894

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 57139dd9325dab51b323e5918f639ef2d45b44a8e577696115674bf56e64c0f1
MD5 86a16b4b5ab95c3aba546be0d504d199
BLAKE2b-256 e7b1fbb0f75894326fff1002609327620ea013110f3ece94e562cff05d5f5576

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fb926bc1d699b90606166a12a654b88d021d4dca15593481b631575ca7275c65
MD5 96719c4eef07356d796ce91d98df3444
BLAKE2b-256 9dc4497a4e671ea511ef25d9b6eb2749f0e2270fd576eaa769c04979f43f27cf

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 29d9aa97d305c7539fa0c2f75b6406cc51714505779f4024192d0dfe2d290d34
MD5 b6501293b5dd2ae8563c60bf324fc02e
BLAKE2b-256 71f631ff17d1357cb48e2264507f830bcd121c482cb7857c9bf80a09346794db

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9ed921221c16192ce4a5e845e68163f4318528bec9df4cdd605d7a1792a0ac89
MD5 c45f059a565b8291fa2ba9711d0f46e5
BLAKE2b-256 05cb5ceef6f42c4f3ba4facd5c149b34ce593679c76814be4dbd1478e0a951c8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 90413475bf88a157ee42026a29a998b0eaf04d3b9d7dc751613e9ab3245fc4a5
MD5 6f039079031c8210e8c125c9f528e178
BLAKE2b-256 82a3acf5d62dbda452bbdab0cf5cb8da152bca650c142d7c611ac1552d729045

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418163504-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e3f49eb62a4030ea4ff9fd36511cbc22b9d14aef59f2d97095aa53e10e4a98fc
MD5 aa573992ea495cd75ee3438cef446c5d
BLAKE2b-256 40b589af83d4f332e73fbf44194aa76ea3bddab89291c99a7a7679752e1916c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page