Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 411d2d5b86dfd4509984f3775c8eb30327ab8a18ec85ff60b0d3312c21b0684d
MD5 a0d27a619b8a5d3c6bac57950b59e132
BLAKE2b-256 897f990f3d8fd66eee5616074b56ec1a45314c64b5deb286d609b39ef08de1d0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 484ea62672ccbb80d8c69083784da3d040c1c28bd18b1c86c46afa42a4302f97
MD5 f7b0439dacfad192ed52c65b8e861293
BLAKE2b-256 ff9dd8ae6f5a0f1a7a8445dc7a6f5ba5d1b82a30601a6f1dbb86d48adf88ca6d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f895aa4bebfe90a4f90a8449cf6daa99c3e1e462d4944c3e446514a56ccfe594
MD5 9d7e0b7fd74ff899b8de581402ccc7ec
BLAKE2b-256 dfd84b2cb0fab334d9c75d0bf13980b6a90352385359bdf87e0c22e13b0af530

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bd667358e69a0dbc7ad9658acfcb5c1ed7d97482b6db6cceb8843ced5b46c107
MD5 37dafdaedde1b3aa8337805c853a2373
BLAKE2b-256 90b8e5795aba6d5a607b43079be5e20ceeb51eedd7dd6b60c9b696fed169e7f3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 27cf50ea70a312cdcb37a824fad2e8a3c2b2194b459ee1b0c6893f341b4aaf91
MD5 8a0a801652c54f453cc34ebcfb40e92e
BLAKE2b-256 b655da5c5a3aae0d78f1980559427657630745c034071ef9e1e2555e571e2254

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ab8965d843e2362a77b2e93882250150e811b7d521127f6a4cf9b33881b201ab
MD5 b6e18350d18104d5485bd3ab20c382cd
BLAKE2b-256 47d114c3163aa31cf5d7666fbe5a33a48374fd2ab43a541d0a3d29edbcc7e60f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4cdff204a54b71ff4c7794c3bd3c65842c685dc1c13ba1084a8b7fbce152514f
MD5 dc327f3e62b46cbcbb6badbed922069a
BLAKE2b-256 2da029e7264d242a161c661afb0cedb6b496c1376ff5e18fa2297789f1bdee43

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 592862a7014065c28f02d9a7657c797627cee14b873f58813349ee5757c7bbe4
MD5 ea235e0c0b4f85d3fcb2480ffd7b8729
BLAKE2b-256 33435d664868ee47d29c91bd7deac8e330d9a7e47fbc2d18ab8dfd38f11a3c34

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9f12b24463aaccbc2a2c2faccf5e004757605c13d10422daf2a2d3ea9351062b
MD5 a85f8e29455ec7385128072b38a51075
BLAKE2b-256 f3ef06bb8456fed6fbb87fb39552322927cf932e92fcfc7242e5da60cab7aa76

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 60437565e6980fa8836b7564bdb4347eedce0d120c53d6d9908953142dc89a80
MD5 28b1eaa4f83a87ce1d6aa95fa7409217
BLAKE2b-256 36f104dcd3696c80145f7a07cfb91323d873757994409f6b7ca5458b5fe09c6a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e6cdf8680eca633f06f76ca472dc5c5ec26d7666089efa56fc097a5358d9a438
MD5 8d8a123c0fe780baf8246cc3fcd60e2f
BLAKE2b-256 2f6b2652e8f05450114e3b0d99e18c25143c4c2b12d57aa1460eae44cac1cd4e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220418215608-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 16dce7cc708e0e7d63c6848f35e93c92218491fa25cf6c6bd3b0d8943ff942cb
MD5 6505347c76972bbc895591b30a540563
BLAKE2b-256 6604841dea216d0ff999ca281482c597ae1a816821d364fcd62c9693bc01f6cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page