Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ec4a6bcb65f16075b586173788bfb45ce3481636ee228e9755cd0c2499e36988
MD5 42af706a62cfded60bd77706edf4dd33
BLAKE2b-256 df519d7eabb55777e643f565b74b10f53459b954cb47250a323f2c6e8bdc571b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6ac9519074912fcff00ea5f590d359ff4d2bdbcb80be303fa37cba1d0eb89fb2
MD5 b195e4884d85cf123b67a5e801d76cac
BLAKE2b-256 ebaa29c0a435717e2d147f03453d7c92275ee03dfc21e2df08295b987c68fcc4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 26421da9a070568257536ca2448129461efdadb89025dbe4375a6611ab25b83f
MD5 f1a0b92a54742f38de09534c30d20d91
BLAKE2b-256 eaf8ab54d0b59e8ca9b2e5e43fab90ec0224055f0be2f1a297cb95f491e68457

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c2afb8972317f34c439c1be341327eb5ef72873ba58604442479f9ce8b228282
MD5 2e6912147cd8d731ce5ca8b12a5fdeef
BLAKE2b-256 12adde25cca4b1a9864c82579761cd7ab8633a09742ca20fca78b04ceaf8d134

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2aff468a237d1f4f51e856a3210de3f54aeaa69d4ef3a02742818cb0befc021c
MD5 576ccac43088a89b0bc64c8f6dbf812b
BLAKE2b-256 d1b897aa465464209f503f3b36e1fb4dfb2d10cef8db9631152f69831e425195

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d99b55adc8a2e09763d2414c301ee2aa218d8390e450c22c37924e058925825c
MD5 79ec0d2cb7d5a292998eecacbc5ed967
BLAKE2b-256 91f02f19f599b333ee97e20aacc7b944ad5aebf48132753c66f02100452fb21c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5dbb8fdc65d430268d4e4e4a866e78a5c0fbb87edf9077ba43a8b2a7ea1a9315
MD5 bf15583b0a126469fe14d6b50399629e
BLAKE2b-256 c0de7fd8996ca53e45cd32299e9ce6b6789c6e576092b152369a5900a633d8f6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e3ad8d687e72d538e6f64b4d288227438536d325e5230da975081b4f01a8265a
MD5 88c15e4b8f7efa573e55c86fcac5467d
BLAKE2b-256 dbde3d21a8cc29d82b98daba95e01d2b0af4fc375f91e7dcda2d475d229d5a8c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4d69f471455fab2f1bb0e8dfa3a8d409fabad70b89a811671cfdb62841c8bc7a
MD5 d5faec185c245278ce1be49b60dbbfdf
BLAKE2b-256 6b53b08934cef1d1a0830ff7aa76a54304f753840022c14fff2f0e1d217ef895

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 876ec06d9a7bee6c2d1bc80244e1fb1d54d4b95696f2a46a2079d47f123fa87f
MD5 b5716a4fe319394f6accaf3598f0fc0f
BLAKE2b-256 376aa91f45dbfe8df060db2524f87b897354775f7155bdf778ed4af26cd11ef3

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 59fba2cbe98639ba8bcf37d3052c7e40f9c73784fde4ccfc3ebf5f603b2b6488
MD5 c44de4a069ea273f2fce958eb2677445
BLAKE2b-256 696982134b4547260e0f9a7ec61821457f80debb9e4264b704f47dd628254105

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220510190654-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 50a274054ae4442226203a74b052293450ff9c7a99aa1add439516b5bc23d97c
MD5 8edb00cc21eda659659c612daa4a3f3e
BLAKE2b-256 85baf10494f85c590cc586c5b49674a0fbc4ff4f7e167c4516482c6047559ce6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page