Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1fcff49574fd1a800a61f30b95442743ed59917a6549c7a1781b9246b41b07e8
MD5 4802f1a9ac560f8b9c94e311f9642cfe
BLAKE2b-256 219e052a4c6ca5c3314aa4715333809bb0cfff3b4b001cc565e4088964ef42fb

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 06cba4e914e82ccfada908b8dca9e054f79d23fbc8f2dcf20362dcd2a95ed47d
MD5 20936b6fb7ecd0f76ead45311409cfc7
BLAKE2b-256 3d3cc239595c1d4908245f740f798d5c1972ed31dfbf0aa6f36f7b08216575b0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d017747ab020d5fe9ba30fdd240f14264e813aede29dac36307e077ac83a9887
MD5 bda5acc08b18b5edb424ed22234674ab
BLAKE2b-256 7fa3091b0613d8017b671b380faf2cef3a81239593de0235c74eec50cde1acf4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 48f2875fd7baa3acfb95cf9fa0cded87aca447b2e0d7fcbf5a0b99a77a9ac117
MD5 d601aadeec6330e100c41ef22c6b3684
BLAKE2b-256 1043f139077a16666d52e5ea232460aa52682744f5a911d4ebc084591c75ed26

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 98620ad70e44cd2e2ae2831bbd1048af262a1b92a8f851039ac32ecba8e3dc88
MD5 9c7e9d06a71d64293762f73695d9e586
BLAKE2b-256 1b5f984e9671445abb5ac49fb471aa5abf1cef24ad40754e58165e24c40b54fb

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7ba7b72c9ade936f3f56a64d6d11e79f34374733fcd789a5898886fe3233f39c
MD5 c2201eae98b63b618db61173bf0a941d
BLAKE2b-256 8e899724cfce5b6505fd95541315ae84b35cda73e11973a42b39aacd8433d8c8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cd671a6230005d5d02f8b085745643028a79a4e8fce64df521525a8c74e6a7c5
MD5 9d1e99f92115594a61bf6a86cea7cccb
BLAKE2b-256 f253cfe5d7a1f3a0cc771c2a93e0daf275ea87c9883c43b207387328a9feaf8d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 005eea8212db044436ac9a74158fb305c91a21dd273f2b6492f1a410c260c5b9
MD5 44b90930f87fa0d5732675bdc1ab54ec
BLAKE2b-256 1f39c95dcb46d7299f63adb9cb75c285cb7554b3afad2f00e6ffc3ca9dd1f9f6

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 83b7479f04a530d8f0d9fde33bf3c542a3b98cb22f203aaf72d86f09a6d0dd25
MD5 91eab97416f6bed2f6be14aad01ddba8
BLAKE2b-256 581d899ae58b48dda436756d6c257c974d2ba3b7c0e3b0439273f5735fa394cb

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f2925d98ddcfdcb27b3eff7dc959c8974d322fb04447cffc610f0f4ebecc5b7f
MD5 51c2eff9a8a76c671a863ee4386036f6
BLAKE2b-256 e42ea31f0a39ea6d2dbbb127c123e3c44a00fa3d6db793727efd41d0944bf682

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8f0e1212967f0e5ea19461ebfd6267d00afa1f43608b04983e2139e6dee4d8b9
MD5 d67dc926015da688d9fac377976e8697
BLAKE2b-256 e5518b13031ec6709c8a44a54f31c1ac0c0df77638ce273ad7544e12ccc286c8

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.25.0.dev20220512204216-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3595a1873305a6a7a1ad7f47a68e6503bb990c4a9db329215c22723a44fa092f
MD5 8bf05b3c7c8fbcd5144468416a5226c7
BLAKE2b-256 5ecce66ed80894e11c60b6e0e5d0848ac9d3600f2fab58b807ee6cb96a1b2539

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page