Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6874788d1d4b454494f503d49a5c54ea5158521ad063858f22cb15d0012f7dff
MD5 d6ba2b6d0cc7a209b50c952f9c2cdea8
BLAKE2b-256 baacab9e78f4f88889cfaa7f8e3a6473b8a784c1caaeeac82e497e60e4dc57bc

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 698487153e118243e30c5e2b1efe2029b6cb7c9c52ea801c36dc65edaa142c34
MD5 7372b16108e089d03c793113199e0341
BLAKE2b-256 7e32bd4694342de24e1b99f21659f36ef7259a7005c1cafbf458bb6e57d53360

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0eb72c363493f9594cbdd05e865b7a344f8341f2b9c2acff47a2afe3edcaadc8
MD5 b62a174bbba8317ec63fe3832c6e9db7
BLAKE2b-256 294f491ea7b7e9b6c4c0931026784b1a7ac662dca5a08b5ee906fb2aed349f7f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c0238d8cccacd7ec5e82ac99bbfb359b411b23a6fefad4745b0e38171e8451db
MD5 5593816d523975d8f40f68a9b8cf6ea0
BLAKE2b-256 1782f942c26effa7ad2f4446ddd145eaaf5c997ff1020ad795546691e93e62c4

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ccae6f77ee55fd55a3553b8ce75f8ef5de97cd6bbb5cd0d910ecf7af1178aec9
MD5 ca959fda1c406e34e8397ce1974bfdc1
BLAKE2b-256 42a4489fb74afeeee7a2242b2a19ce67fa88f2191044c6898b3614884d51eb57

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 96720617460dd59fd02ca256e1ee2cbbc8bc2973135f4a30f75e72fa36ecd03b
MD5 7cc54c8aab91d37957b16f606a170303
BLAKE2b-256 77c0d8de20e39aabac26499d4d17d653fa7426cf240559825600a8aba571a7db

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6e533ccbc4f36b1f6a9edfba4009e753e896020837b7d4fb69c116a760c6b125
MD5 c761d711a870d94adff2ef6e66baa634
BLAKE2b-256 6a12b43cfe4f901f8c8c71e34c495b129b0a59a7f12994ff3d6a2c6e43e42f1b

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 00ae7064a85bf150eab5fc3f472420496afac927ff4a39999449cac66be694aa
MD5 5ceedefc33efcb8d92f4ef537f93f372
BLAKE2b-256 a259c722a18a19972b19cbbc5755448963c888b66506b64f9d66dfeba079a52d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d526f3c3405fe37a9398624df4df8daeb80c2290becb1f218a97f2edf1104871
MD5 9f42169705fc15a9b969c29bfec1a4a8
BLAKE2b-256 f6b2b8130fd932b214164daeff43ca69fa82070f59db05c190b6cec973d66c6e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 02f523468a8ec2aa45b94d7387a1b7f02a569eaa7d480b4242b9194cbf7fa36a
MD5 a52c092ca21dea621bc56a99de0d1eb8
BLAKE2b-256 b3ae02a8fcdf685c4a3e886a594c208168998c61d37f2e26c37db4c1cf440748

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c7f64a1985e1ea7740fc63307eec8e7d3149d328c83c6185ed3ab987e309b926
MD5 6978ca88290becc541d6cf9524690e88
BLAKE2b-256 466cdb5fce1e84a83b66de39f8973f4596e8974bfab55fc378df908fc7ef531d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220517024048-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9f2b6fae5ea4a2649bf081dd42ff50a0fd53019e787654865343014f2792fcd8
MD5 213a678a140dfd9f4a02b81b160e0ae6
BLAKE2b-256 b30aebc98f9cd388a08d119c81e4bd6c02a4146777dcb8b998eb949333a9c767

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page