Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 431601fab9ec8e1310df8a244c6e30b86654940ae3576f365217705cbe763d1a
MD5 362359e9cee20190ad28cec07accbcc7
BLAKE2b-256 4a7e02247960481d0d589efcabe8006021ce85acaaa663f1fe512cc81d4e7806

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c056f9fd21ebb42d09deb6cbabc40568166a0a83c3b31c897d701fa0ba948f7b
MD5 23c0b8ae2de63bc9fcf0c684afc4c138
BLAKE2b-256 45b8bbed28f55ff87d73b59c416d8cf1995a08296643407d1c2277b231771705

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 183a572a3975fb2718ac54504dcd5ced1238d69996b168db1255b9a1f8fbc6d7
MD5 f00b140259810736d85bde1ab567cd8d
BLAKE2b-256 80edc8caf7abf6ef629157a02045160e09d71fcd6515f148f428956ac5e72619

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 065a80e157dbee966fd97db1c23cd37d420d0027d75547b6ff4a15a96a5b3185
MD5 235693db3c2e6201dc2bd3f3b50df56b
BLAKE2b-256 2d2f9131d275b3bcd4a3b782872fd58939ff28b230a9eca2cf83cb9c82e00c1e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 15bea390bd245853785e2bad5299adca901557eabc0045a2b0e7bf79df6308ee
MD5 2d61b7e5bfdc8b4876422d3d27240a3b
BLAKE2b-256 32cc5c68ae7dc2d12379c0ab123836e428d6d7293535f37eeaed63a7aaf59f4e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3882f4a888d5dcb8cf98792fd0cbe6748a9c902c3abfa5122951821968676de3
MD5 af07a6a798fa218797bad785c936f5d6
BLAKE2b-256 46727f70eb378d1f58bf43ed7442f08bda4a95b210d4a846b8d1b0fbb4d2d01a

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 32fbb6e0c0177825b4a105846db15edb350a6dd266d45e78baf68cfbf449da99
MD5 36ebeb475eabc1cea58f887b617ead8b
BLAKE2b-256 bd4abdab73d3437efcf997807375af595c3bd4f3dd4012f570f188268a2ac6a5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 200959bf35fb60dd0f952d33fadc14d3a4ba0dad4b1240998231fe3fa3dc32b4
MD5 76973ee6e060a482d551dee5d98f91d9
BLAKE2b-256 0dbc56d582db7414e7ac827fcd5b7250e69f8789e25dfe60c354deb2fc825472

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 253e93f384950e7a76a0f003ae63d6b0a85e62ccc49b018ac0903769240c7d6f
MD5 909d0847940803654c0c50867a3ce6c8
BLAKE2b-256 93ced4fd9a76e7e7a40d95cda15df768dbb65c799287d64bc744a8b08d298d6f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f556584b65b52cb89608bf264e0859b802d1ccdd6eae4524d54f03ff3dc9e5d2
MD5 6855859203a8d3c72697e4856dd92512
BLAKE2b-256 b9ce6ed1be9c95c55feaa44c673bebed69d10c46c792c9297ab4ceb952868292

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a1ed0dd4f932707145f2e96836c9f58cf78f4b0c57051d44e192138b1e2cad4d
MD5 ef89e125868d5562241c6c85b916ad9c
BLAKE2b-256 d54d931f5e33201b6f7f35a394e0b8182adc9d455ab7c5599975d35cb5385507

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.26.0.dev20220803032134-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e44e73a04daf36ea75c8936a6ec5980a7e8304ecbbf4efe8348ae61380cb6751
MD5 fe802696d88ea8ad517421ef31967554
BLAKE2b-256 ecf2b79512c4cc12bcc263c09f14dda65bd6404dd8ae4520ca809622be9a537f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page