Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 478cc1f7d1e77949e18d66811278dddcca234c00859cda6a1b510a06caad0c01
MD5 18aecd90981d3ee67f2be27422ac8ee3
BLAKE2b-256 f64857ffd6b98b1974128f39bd6bad237a153bb55713a15b9ae824875663e89e

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 807e7ad9722c52256b934a3dfc4bc8888e95003fe6b6eb66541af15b12d0856e
MD5 e05d33744687de2154ec5fa47686eb70
BLAKE2b-256 3156197ee52d9618db01244bd200abc9ea057831f220311165ee2352477ad139

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2b26b5ffbfaac766f2996c2324da35ec1c6964992060b1a67f7d6a5a7768e727
MD5 f38636a7637598922581b26ca618ca47
BLAKE2b-256 06a746d6afe5b0282d210183a3d2dc9a56bd7623e0d520ed9a511c500b1ff5d7

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1aee53d445a24f13590d696b08bf86bcea606530bea3fe6a982af75fd85e4d36
MD5 30dd9e28185bcc6f5e4ac684e67a3482
BLAKE2b-256 94057f1dfe11a1a16d09168fe775aebc1f7b8ceba6960dbb303ae312a7f2dea9

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 62ceb3fd337b84424017a3273b549fb73af49c91616e576444346d150f857ef6
MD5 d912207f2cd018aac9c82a15c529da53
BLAKE2b-256 f108be623260e0b3eb0faf59df2c0742aee658f78ea736ec56f336ad679447fd

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 be72f8a6a5221227a6ef2197add178b084380c37d6c069676bc3f81d54b2f018
MD5 c41618181b5743f35c8afc4f24d85e16
BLAKE2b-256 ff01e77bf519378b6b052e4129c1f2b500cf67d263cf04f3b6050bd7736b433d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 48a2aef50258eb6af28a172266e81771277a2342c1e0d1ce87b917ed8e9232ff
MD5 41f6e7eed45e067aae816104029142ed
BLAKE2b-256 38bcea4e512190205370d87ec6ea0d22106a3325ac9309979a2471ed15b8583f

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dd0a0fcd899e0655aca8da2ee964c6662b8c3cb4a85dcaaa228427383a22cc34
MD5 4776ee10651125cbcc495f98f00f8ca7
BLAKE2b-256 4af8955aa85d86c1aa0ff9915c23bc01bf2cae6353fd8ea63bf5cd768c4b875c

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 81723576163d84a8c7eff02f28b57cdbe4feb42139447e1d470ad75f324b0b0b
MD5 95b620557e42d01c087049173841997a
BLAKE2b-256 73525bb004db48380916c3bc69229f4bdff9bac0895d473f27ce9a82ebcdfabd

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5256db73a178ac59fc8e2027d3735ab1820b62102c47fe337da5e3f36e2ae94e
MD5 10e934c8c44fe9e97b35d00269a051f8
BLAKE2b-256 7bd914c439085f970e5d8d9132a3df619064a998a3f3292234240f7925eb5f26

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6b01c7d7c352f805c50e3d9da67be164af11115caf6f3427ed04f9c3ff7b4cf7
MD5 2da95ed336f215e9e0ee4a0106bd4be6
BLAKE2b-256 f58776a625ce59a6440694947319a8138c27d7abcd846e5da32c8b0722c94ab1

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220829180318-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0d1acd2d987205eef6ab526d31cf8fe32be38e013cd903c1debcf281af6f314f
MD5 76d29007b1286aa540d50498671b8947
BLAKE2b-256 a4f21b2466ab83f3ea9b16ed699d90099f8ec6ea654a35e984e40467988d6871

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page