Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fdc9b547ccee145094f144be428378377ed2ad54a5b9209270bef8edf7c33e05
MD5 c4451add3f7e2450082b4cb4d671c911
BLAKE2b-256 a00bb074d72de6c31c5af11db53d729d2223006ba35668e7e84846e34d9d53fb

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 67221892db571eb56e68f9a049cdd84567889cb9e6a5da1da4a719c35ef093f9
MD5 d84159115750672e265666a71d7fb087
BLAKE2b-256 bc57b201d55299a4d82b67abbee7202e3b16ba68add3572854fc2b5c6dc99228

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 01a77b4adacd6252e8207ffe53d6e6775aab4d30158f9d1a60203c93db8bfbcf
MD5 98870e3ede0ffe20e78a67b49ef4cf9e
BLAKE2b-256 58fc4e508d1f2a3d5ea9f318c7d43205e2471f0089bdf30d5596d147597fe7fd

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cc462786eca0cfe66952247107f365c89494aa3f5680af6da188e795eb9b2f9b
MD5 39beed308325eb5b8f0c4f7be3ed76d8
BLAKE2b-256 d64b7d037b023e712dac53e1d022b56b529b2bf9c25646900d138c9102de3d01

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f117e05a1e3da319f7eea24c917ad1a23bf9c8e8d255f56342495b293fd0cbf6
MD5 6a81d5d471f7a9a5cceefe5947ef51de
BLAKE2b-256 3ce64733aa0cbf59355d2aee114a19c5f1f67671e348bca622d9f69f11739fe0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8d3453c82c88202f170d0d7b5f7a2495e50bc882cb318e26f07e148ceb7fa0cf
MD5 5bb559b66ee374f5be7962793183b475
BLAKE2b-256 535f75ab7a379005d6bddee5f9fcec3260133dc1de078f3d07df1b69aa941ee0

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 eaa2a38f7b9ae640da451f6638e7756abef56698aa29c31d54824aa0190bcedb
MD5 a614baf35f05d256dd1f6d45fd1cd7f8
BLAKE2b-256 848bb853fbc651e569ee774ec2fb4af4b1b5a293fb19f1bef8d1534a7d041e35

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 35a7a90f5b637725830520550d8e913d8e9e8583cf58606925547c6f6358c88e
MD5 bbe7a61aaaaf5928a9401467a31c80fc
BLAKE2b-256 db6efb3ec0c6d89a70b9754652bc889045e5f4f887077a02ffdda35086d41435

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9cb3c87c6eb633a39c141a0a0e8264bb11a2ce9264c1a8ff8ccab4766d037436
MD5 9e0649fd82a22491d849c8555097c7c1
BLAKE2b-256 d092911021429531dbe1a7e4286c8c7cb00377862bf90e93630751e4cc4cb0e2

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ce52bba64f5a6b9adcb925e43eeecf87c3d49ae14742f73d2f85c22188e84c63
MD5 19aea45372d0705f0ff04ff862e864f5
BLAKE2b-256 73ec93f154bc9de680e7592ab5aa240da446ed93e84dd20b222368685acea61d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 68a8299ef9ee8c50b762ce66cfe5008d5f76c367c9dbd3c7bc3bc86d41c9472d
MD5 7f48db93d69842bbe433e5ccba84dd5b
BLAKE2b-256 a63b2b3ffe49c60697ae22f055969e8beb86c64b1b1cca565f96cc57a8fa4bae

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20220830165253-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4c43c94abe531da39dd52c7fac133fa40e993c14400b5732211ced0540cbf6d6
MD5 5ebcfb0c96b5dabe386c5fd51f3bcb21
BLAKE2b-256 4b2e3385e34d8f9d4516049d985ec37bf6b384f8bd54e2671df6587846c511f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page