Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

To ensure you have a version of TensorFlow that is compatible with TensorFlow-IO, you can specify the tensorflow extra requirement during install:

pip install tensorflow-io[tensorflow]

Similar extras exist for the tensorflow-gpu, tensorflow-cpu and tensorflow-rocm packages.

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.27.0 2.10.x Sep 08, 2022
0.26.0 2.9.x May 17, 2022
0.25.0 2.8.x Apr 19, 2022
0.24.0 2.8.x Feb 04, 2022
0.23.1 2.7.x Dec 15, 2021
0.23.0 2.7.x Dec 14, 2021
0.22.0 2.7.x Nov 10, 2021
0.21.0 2.6.x Sep 12, 2021
0.20.0 2.6.x Aug 11, 2021
0.19.1 2.5.x Jul 25, 2021
0.19.0 2.5.x Jun 25, 2021
0.18.0 2.5.x May 13, 2021
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d98f6cd01f57718513364c3025fc1de61594eed62ef03b55ad0d77e97f957736
MD5 6584a7e13ec7dbcd9f2ffaa89223204a
BLAKE2b-256 50e3d48b446b436581ae0ae34fdd336e8a8aff07f1749e95e14cbf6ca3946aeb

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 956a053b50e7751bfa7c980eea8ba7cf7466baa50e82127f5983c64ab916e2c8
MD5 acd387e5de22b71b0b5937e002a253f3
BLAKE2b-256 d5d4bb5c49b531556482709ff1326c92366f0ef860d3b84303a1eb1e36eabd77

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 08164595fee4373324481bcf246dc7cc376db6667c1fda2dd50e04118bddb821
MD5 62f64afee3e52cb2ca2a2e675f7974ba
BLAKE2b-256 92c301d4924851a2bcff0dd11b0950f95620128ca7cc7f3259b830213c73bec5

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b58ad5659ecdbc0ad9f2b39ad81929257722d8b64cc68a3105a6514f512de5d4
MD5 47c3df69fe9075f02875769683941100
BLAKE2b-256 67c68251e0058a8647df4fc5bdd8d413f7a88243c4a1d9eb98e4bce288434257

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 56469899a55805c783d2677b63091e261e2c6e763cba6548ea1b8195691f4044
MD5 7d157866a5074e94f08b3e941953b26d
BLAKE2b-256 082902a924a7733833fbaeab8d3f01e2df7356a763ac98e99c74e9511d7bed69

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 08ff245a9b85f805db98c2e410cfc37a635760cf9a1dc311a623384dce01dff2
MD5 6d78c7cccc846c0545a2a87075f50e4a
BLAKE2b-256 bc59ab7ba785992a6b95a451104f30159512ba8e2d6fd9ee8f6332ca169eb022

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cad97ef7b7862ab3cc03a271951861b7abed134669afa54fc4bc2007bfb47913
MD5 c3a7fcc383a703c3ebd84f66626c6fa4
BLAKE2b-256 ab86c9d5cc486fbdefe4072756cd9ce58a8bc69498e45c7959b36da4689a2439

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7da4c0cd06777eb20ad66851fd99a87bb2e8afc05318b02182bd278660bf262b
MD5 9f1680e49e5ee03ce0f67fa9353e0e16
BLAKE2b-256 c87ec26a5dec97c55c45544da26ff2d48695c497698d2cf1efa070dfaeeeef6d

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 702df783739b2d031cbb11173dab17bba23cb809b04bba3005f3fe8526d2275a
MD5 2d1ed5a373b88217ccd0403cc1419fb0
BLAKE2b-256 530be926d325fc1d3656a18f55d3db3b5a2f1ecd0394dd4308f692309c527a12

See more details on using hashes here.

File details

Details for the file tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_gcs_filesystem_nightly-0.27.0.dev20221107182342-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b015c7cd6f8ff5fd5c66d6940649fbf607ef5682c86248f7c840d193b44d9921
MD5 3c613f4278e241f9f0227dc2ed655499
BLAKE2b-256 273a65a27c9b47801a319a74e11a153c88c58d5eba06e7ec9c01591f64c3f3ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page